Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
Author(s): Arganda-Carreras, Ignacio; Kaynig, Verena; Rueden, Curtis; Eliceiri, Kevin W; Schindelin, Johannes; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xz5q
Abstract: | Summary State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers. Availability and Implementation TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation. Supplementary information Supplementary data are available at Bioinformatics online. |
Publication Date: | 1-Aug-2017 |
Citation: | Arganda-Carreras, Ignacio, Verena Kaynig, Curtis Rueden, Kevin W. Eliceiri, Johannes Schindelin, Albert Cardona, and H. Sebastian Seung. "Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification." Bioinformatics 33, no. 15 (2017): 2424-2426. doi:10.1093/bioinformatics/btx180 |
DOI: | 10.1093/bioinformatics/btx180 |
ISSN: | 1367-4803 |
EISSN: | 1460-2059 |
Pages: | 2424 - 2426 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Bioinformatics |
Version: | Author's manuscript |
Notes: | Availability and Implementation
TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation. Supplementary information are available at Bioinformatics online at https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/33/15/10.1093_bioinformatics_btx180/3/btx180_supplementary_tws-manual.pdf?Expires=1611354059&Signature=vy5VA5X0EGaUKbtapTr65TZ6m3XlL9mQU8jF4ZxIZij3uaDMuWsto5xxg3joksyy0~k6SG3zlP-RBiRbLvCmx6lMqZKFsENENf5y9AcYg7hT7jT2c7Ic66IKFx9qFWnc~ij228z6mGnyoOT8B1P3QI0hyLu96Kysjbh6buBcbVOLbUQ90RPvx26IBDpv6vecG7rVKdUBBa-kMSoMmo75r-1F9vupHDm5bn~m6~JNpnVertSDuiZDEVqCfFfajOMDH8vkxakxtwq20Bou7MTHaX2AMsfKAqlTKnElNMlsLHVK8KqKDs7ONeqsJCllm2w-u--C8mhqC3PcaM-ym0sKmw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.