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Introduction
State-of-the-art light and electron microscopes 
are capable of acquiring large image datasets, but 
quantitatively evaluating the data often involves 
manually annotating structures of interest. For 
example, to measure the average size of mitochondria 
in an electron microscopy image stack, each 
mitochondrion has to be outlined by a human 
annotator. This process is time-consuming and is 
becoming the main bottleneck in the evaluation 
pipeline. To overcome this problem, we have 
introduced the Trainable Weka Segmentation 
(TWS), a machine learning tool that leverages a 
limited number of manual annotations in order to 
train a classifier and segment the remaining data 
automatically. The tool works interactively, allowing 
the user to guide the training by providing corrections 
to the classifier output. In addition, TWS can 
provide unsupervised segmentation learning schemes 
(clustering) for image data and can be customized to 
employ user-designed feature maps or classifiers.

The usefulness of the TWS tool has already been 
demonstrated by its utilization in a wide range of 
imaging pipelines that involve disparate segmentation 
tasks: analyzing wing photomicrographs (Dobens and 
Dobens, 2013), visualizing myocardial blood flow 
(Krueger et al., 2013), monitoring nests of bees (Hart 
and Huang, 2012), and other applications. TWS has 
proven useful for performing segmentation using many 
different image modalities. These include magnetic 
resonance imaging (Kulinowski et al., 2011), two-
photon microscopy (Villa et al., 2013), serial-section 
transmission electron microscopy (Laptev et al., 
2012), confocal fluorescence microscopy (Felcht et 
al., 2012; Frank et al., 2012; Crepaldi et al., 2013), 
micro- and computerized tomography (Maiora and 
Graña, 2012; Macdonald and Shefelbine, 2013), 
transmission scanning (Mathew et al., 2012), and 
angiography (Favazza et al., 2013).

Background
Traditional image processing methods
Image segmentation is generally defined as the process 
of partitioning a digital image into nonintersecting 
regions. These regions or segments comprise sets of 
pixels that share certain visual characteristics and 
are assigned a specific label. For instance, in the 
microscopic image of a cell, one could segment the 
different organelles and label pixels belonging to 
the nucleus, the mitochondria, and other structures. 
Similarly, in an image from a security camera, 
one might want to identify suspicious objects and 
separate them from the rest of the pixels. In the same 
example, a face recognition system may attempt to 

label the person or persons appearing in the image. 
Therefore, image segmentation can be regarded 
as an ill-defined problem since, depending on the 
final application, different ways of partitioning the 
same image can be considered correct. Hundreds 
of automatic and semiautomatic segmentation 
algorithms have been presented since the appearance 
of the digital image. However, no single method can 
be considered appropriate for all types of images. 
Moreover, methods that have been designed for a 
particular type of image might not be applicable to 
other types.

Most traditional methods are based only on the 
intensity information of pixels. Nonetheless, humans 
use much more knowledge when performing manual 
segmentation. For that reason, in recent years, 
trainable methods have emerged as powerful tools to 
include part of that knowledge in the segmentation 
process and improve the accuracy of the labeled 
regions. Algorithms to perform this task have been 
developed principally for natural and medical images 
but can be adapted for other types of image data 
and transferred to platforms that are accessible to 
both experienced and inexperienced users. Such 
software should provide a user-friendly and intuitive 
framework for prototyping and applying machine 
learning algorithms to image data and visualizing 
their results.

Platforms that build in machine  
learning tools
Just a few software platforms partially provide both 
machine learning and image processing tools. These 
include commercial platforms (e.g., MATLAB, 
MathWorks, Natick, MA) and open-source plaforms, 
e.g., the Konstanz Information Miner (KNIME) by 
Berthold et al. (2007), RapidMiner (http://rapid-i.
com), Vision with Generic Algorithms (VIGRA) 
by Köthe (1999), and CellProfiler by Kamentsky 
et al. (2011). Commercial platforms usually target 
inexperienced users and a wide range of image types. 
However, the details of the algorithms are hidden, 
which is undesirable for use in scientific research. 
Conversely, those details are available in open-source 
platforms such as KNIME and RapidMiner, which is 
becoming the world-leading open-source system for 
data and text mining. Nevertheless, RapidMiner 
is developed primarily by the machine learning 
community for the machine learning community, 
and its image processing extension by Burget et al. 
(2010) provides only a minimal set of image tools. 
This makes the platform less attractive for computer 
scientists to use it to develop image segmentation 
solutions. Other projects like VIGRA offer powerful 
computer vision libraries with a focus on algorithms 
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and data structures but no visualization tools or user-
friendly interfaces. And only a development version 
of CellProfiler integrates VIGRA learning methods 
into custom segmentation pipelines.

To address these deficiencies in the field, we started 
the new open-source software project TWS. The 
project combines the image processing toolkit Fiji 
(Fiji Is Just ImageJ) by Schindelin et al. (2012), a 
popular distribution of ImageJ by Rasband (1997–
2009), with the state-of-the-art machine learning 
algorithms provided in the latest version of the 
data mining and machine learning toolkit Waikato 
Environment for Knowledge Analysis (WEKA) by 
Hall et al. (2009). TWS provides a set of library 
methods for extracting statistical properties of an 
image from user-provided pixel samples and uses that 
information to segment the rest of the pixels in that 
image or a similar image. These methods are then 
implemented in a modular and transparent way and 
can be called up from any Fiji plugin, script, or macro. 
TWS also provides a friendly graphical user interface 
(GUI) for loading a two-dimensional (2D) image or 
image stack and performing automatic segmentation 
by interactive learning.

TWS came about through the perceived need of 
a general purpose workbench that would allow 
researchers from the imaging world to access state-
of-the-art techniques in machine learning to 
improve their image segmentation results. This 
need was observed by Burget et al. (2010), who 
created an image processing extension for the 
popular data mining software RapidMiner. Following 
that innovation, Sommer et al. (2011) presented 
ilastik, an interactive, user-friendly tool for image 
classification and segmentation based on training a 
random forest classifier on precomputed nonlinear 
features. TWS provides both a set of library functions 
to design experiments and algorithms, based on the 
WEKA and Fiji platforms, and a complete GUI for 
performing interactive and noninteractive learning.

Enhancing Fiji and WEKA
In the past four years, Fiji has become the software 
of reference for many scientists to meet their image 
analysis needs, especially in the field of biomedical 
imaging. Fiji provides its users with powerful tools to 
generate sophisticated image processing pipelines and 
algorithms, via scripting languages and library methods 
that can handle many types and sizes of images. At 
the same time, WEKA is nowadays recognized as 
a landmark system in data mining and machine 
learning. It has achieved widespread acceptance 
within academia and business circles, and has become 
a widely used tool for data mining research.

However, little (if any) of the success of both 
toolboxes would have been possible if they had not 
been released as open-source software. Giving users 
free access to the source code has enabled a thriving 
community to develop and facilitated the creation 
of many projects that incorporate or extend WEKA’s 
existing functionalities. One of the best examples 
of these projects is TWS, which combines both 
toolboxes to enlarge their capabilities and increase 
their impact and range of application. For WEKA 
users and developers, TWS offers transparent access 
to a whole new set of supervised and unsupervised 
learning problems based on an arbitrarily large 
number of image features. For Fiji users and 
developers, respectively, TWS provides a new and 
user-friendly way of performing image segmentation 
and facilitates access to learning tools that can be 
used to either enhance existing image processing 
algorithms and pipelines or create new ones.

Implementation
Computing environment
TWS has been developed using the developing (but 
stable) versions of Fiji and WEKA (version 3.7.6). 
The only requirement to use TWS is to have Fiji 
installed and up to date. In fact, given the cross-
platform nature of Fiji, it can be run with any Unix, 
Macintosh, or Windows environment. The software 
is distributed as open-source software with a detailed 
user manual and multiple tutorials published in the 
Fiji wiki (http://fiji.sc).

For basic users, TWS requires only basic experience 
and knowledge of Fiji. The user should be familiar 
with the simple interface of Fiji and its plugin system. 
The TWS plugin can be run from the plugin menu 
under the segmentation submenu. The user can then 
interact with the GUI without the need for any 
other Fiji commands (a detailed explanation is given 
in the user manual). For more experienced users and 
developers, the TWS library methods are accessible 
from the scripting interpreters available in Fiji as 
well as from any third-party script or plugin.

Data input/output
When the plugin is called up from the Fiji menu, 
TWS runs on the current 2D (gray-scale or color) 
image or stack of images. If no image data are 
open, the plugin will ask for a file to load in any of 
the multiple image formats compatible with Fiji. 
The image feature information produced in the 
interactive learning procedure can be saved and 
loaded in the Attribute-Relation File Format (ARFF) 
(Witten and Frank, 2005), which can also be loaded 
and manipulated in the WEKA suite. The trained 
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models (classifiers and clusterers) can also be saved 
and loaded in a WEKA-compatible format (.model). 
This separation between feature data and models 
enables full compatibility with the WEKA tools and 
library methods. For instance, a user can save the 
feature data of an experiment using the plugin’s GUI, 
then load it into the WEKA experimenter to find the 
most suitable classifier, and finally load the classifier 
back into the GUI to use it in an arbitrary number 
of images.

Image features
In computer vision, a feature is usually defined as 
the part of an image of special interest, and image 
features are used frequently as the starting point for 
many algorithms. Therefore, the overall algorithm 
will often only be as good as its feature detector. For 
that reason, TWS includes a wide range of image 
features, most of which are extracted using common 
filters or plugins available in the Fiji core. By default, 
more than 70 features are computed using generic 
parameters and spherical filters with radii varying 
from 1 to 16 pixels. The user has complete freedom 
to select features and tune their scales and optional 
parameters using either the settings dialog in the 
GUI or the specific library methods.

Based on their purpose, the features available in 
TWS can be grouped into the following types:

•	Edge detectors, which aim at indicating 
boundaries of objects in an image. TWS includes, 
among other edge detectors, Laplacian and Sobel 
filters, difference of Gaussians, Hessian matrix 
eigenvalues, and Gabor filters.

•	Texture filters, to extract texture information. 
Among others, TWS provides a set of filters 
including minimum, maximum, median, mean, 
variance, entropy, structure tensor, etc.

•	Noise reduction filters, such as Gaussian blur, 
bilateral filter, Anisotropic diffusion, Kuwahara, 
and Lipschitz.

•	Membrane detectors, which localize membrane-
like structures of a certain size and thickness.

In addition to providing filters, TWS allows the user 
to customize features. As described in the wiki, a 
very simple script is needed to include user-defined 
features in the segmentation process. As long as they 
contain unique identifiers, an arbitrary number of new 
features can be used either alone or in combination 
with the existing filters. This opens the door to all 
kinds of linear and nonlinear features that users can 
externally create, including 3D features.

Segmentation by pixel classification
To segment the input image data, TWS transforms 
the segmentation problem into a pixel classification 
problem in which each pixel can be classified as 
belonging to a specific segment or class. A set of input 
pixels that has been labeled is represented in the feature 
space and then used as the training set for a selected 
classifier. Once the classifier is trained, it can be used to 
classify either the rest of the input pixels or completely 
new image data. The number and names of the 
classes, together with the desired learning algorithm, 
are defined by the user. All methods available in 
WEKA can be used. These include a large variety 
of supervised classification and regression algorithms 
and clusterers. For a complete list, visit http://
wiki.pentaho.com/display/DATAMINING/Data+ 
Mining+Algorithms+and+Tools+in+Weka . Figure 1  
describes the pixel classification scheme of TWS.

One of the strengths of the TWS toolbox is that 
it allows different options to perform training and 
testing. One possibility is to use the GUI following 
an active learning approach. In a similar way to 
ilastik (the image classification and segmentation 
tool developed by Sommer et al., 2011), the user 
is allowed to interactively provide training samples 
while navigating the data, obtain on-the-fly test 
results on the loaded input image, and retrain the 
classifier as many times as needed. In this way, the 
user can fine-tune the parameters of the classifier 
and select labels until achieving satisfactory results. 
More classical (not interactive) approaches are also 
available via the library methods, allowing training 
on arbitrarily large labeled data.

Creating your own algorithms
The segmentation of image data typically requires 
applying a sequence of algorithms to many images 
in a so-called pipeline. In Fiji, fast prototyping of 
segmentation pipelines is facilitated via scripting, 
which uses simple programming commands (or 
scripts) to define sequences of operations that can be 
applied to sets of images.

Scripting became popular among inexperienced 
users thanks to the simple and friendly ImageJ 
macro language, which allows users to record GUI 
commands and rapidly construct basic programs. 
TWS is not an exception, and all the user actions 
in its GUI can be recorded and reproduced later in 
a macro. Additionally, Fiji supports a broad range 
of scripting languages, which can be used without 
knowledge of Java (the native language of Fiji and 
WEKA), and offers more advanced programming 
capabilities than the macro language while keeping 
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relative simplicity for the occasional programmer. 
TWS makes extensive use of this functionality to 
provide an ideal framework to rapidly prototype and 
implement new algorithms. Individual commands 
can be interactively tested on the current images 
using the corresponding scripting language 
interpreter. In addition, the script editor enables 
writing, debugging, testing, and running arbitrarily 
complex scripts in all the supported languages, 
including Java itself. For example, it takes only  
10 lines of code to load an image and its binary  
labels to train a classifier on how to identify cells, 
apply the trained classifier to a second image, and 
extract each individual cell in the image by running 
a watershed algorithm implementation (Tsukahara 
et al., 2008) on the cell probability map (Fig. 2).

The details of the code or the chosen scripting 
language are not relevant (TWS scripting tutorials 
are available at http://fiji.sc/Scripting_the_Trainable_
Segmentation). All scripting languages in Fiji allow 
users to access advanced image processing libraries 
and now, thanks to TWS, to interact with the WEKA 
machine learning algorithms without mastering Java 
programming. Moreover, it is also possible to integrate 
this functionality through the Fiji interfaces in other 
image platforms such as MATLAB or ITK (Ibanez et 
al., 2003).

Conclusion
We have presented TWS, a versatile tool for image 
segmentation based on pixel classification. The 
software has a library of methods and a GUI that 
makes it easy to use without any programming 
experience. This toolbox is an important addition 
to the growing arsenal of segmentation plugins in 
Fiji (fiji.sc/Category:Segmentation) for analyzing 
biological and nonbiological image data. TWS is 
designed to facilitate the integration of machine 
learning schemes with image processing modules 
into a pipeline. Researchers can easily prototype 
segmentation algorithms using TWS methods with 
any of the scripting languages available in Fiji. 
Scripts are indeed vehicles of execution, but also act 
as mechanisms for disseminating the new algorithm 
or pipeline that are easily accessible by others.

TWS is intended to work as a bridge between the 
machine learning and the biomedical imaging 
communities, facilitating a framework to develop, 
test, and apply novel solutions to the existing 
segmentation challenges. The project is completely 
open source, and we invite users and developers to 
contribute to its growth.

NOTES

Figure 1. TWS pipeline for pixel classification. Image features are extracted from an input image using Fiji-native methods. Next, 
a set of pixel samples is defined and represented as feature vectors, and a WEKA learning scheme is trained on those samples 
and finally applied to classify the remaining image data. The input image in this example pipeline is a serial section from a trans-
mission electron microscopy dataset from the Drosophila first instar larva ventral nerve cord; its pixels are divided into three 
classes: membrane, mitochondria, and cytoplasm.
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Figure 2. Scripting your own algorithm. a, Example of BeanShell script that trains on a cell colony image (b) from the Broad Bioim-
age Benchmark Collection (Ljosa et al., 2012) and its corresponding binary labels (c) and then applies the trained classifier to a test 
image (d) to obtain its in/out probability map (e). The algorithm finally runs watershed segmentation to extract the boundaries of the 
cells (f) and labels the individual objects (g).
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