
© 2014 Arganda-Carreras

1The French National Institute for Agricultural Research (INRA)
UMR1318, Institut Jean-Pierre Bourgin

Versailles, France

2Harvard School of Engineering and Applied Sciences
Cambridge, Massachusetts

3University of Wisconsin–Madison
Madison, Wisconsin

4Howard Hughes Medical Institute
Janelia Farm Research Campus

Ashburn, Virginia

5Princeton Neuroscience Institute, Princeton University
Princeton, New Jersey

Trainable Weka Segmentation:
A Machine Learning Tool for

Microscopy Image Segmentation
Ignacio Arganda-Carreras, PhD,1 Verena Kaynig, PhD,2

Johannes Schindelin, PhD,3 Albert Cardona, PhD,4

and H. Sebastian Seung, PhD5

© 2014 Arganda-Carreras

75

Introduction
State-of-the-art light and electron microscopes
are capable of acquiring large image datasets, but
quantitatively evaluating the data often involves
manually annotating structures of interest. For
example, to measure the average size of mitochondria
in an electron microscopy image stack, each
mitochondrion has to be outlined by a human
annotator. This process is time-consuming and is
becoming the main bottleneck in the evaluation
pipeline. To overcome this problem, we have
introduced the Trainable Weka Segmentation
(TWS), a machine learning tool that leverages a
limited number of manual annotations in order to
train a classifier and segment the remaining data
automatically. The tool works interactively, allowing
the user to guide the training by providing corrections
to the classifier output. In addition, TWS can
provide unsupervised segmentation learning schemes
(clustering) for image data and can be customized to
employ user-designed feature maps or classifiers.

The usefulness of the TWS tool has already been
demonstrated by its utilization in a wide range of
imaging pipelines that involve disparate segmentation
tasks: analyzing wing photomicrographs (Dobens and
Dobens, 2013), visualizing myocardial blood flow
(Krueger et al., 2013), monitoring nests of bees (Hart
and Huang, 2012), and other applications. TWS has
proven useful for performing segmentation using many
different image modalities. These include magnetic
resonance imaging (Kulinowski et al., 2011), two-
photon microscopy (Villa et al., 2013), serial-section
transmission electron microscopy (Laptev et al.,
2012), confocal fluorescence microscopy (Felcht et
al., 2012; Frank et al., 2012; Crepaldi et al., 2013),
micro- and computerized tomography (Maiora and
Graña, 2012; Macdonald and Shefelbine, 2013),
transmission scanning (Mathew et al., 2012), and
angiography (Favazza et al., 2013).

Background
Traditional image processing methods
Image segmentation is generally defined as the process
of partitioning a digital image into nonintersecting
regions. These regions or segments comprise sets of
pixels that share certain visual characteristics and
are assigned a specific label. For instance, in the
microscopic image of a cell, one could segment the
different organelles and label pixels belonging to
the nucleus, the mitochondria, and other structures.
Similarly, in an image from a security camera,
one might want to identify suspicious objects and
separate them from the rest of the pixels. In the same
example, a face recognition system may attempt to

label the person or persons appearing in the image.
Therefore, image segmentation can be regarded
as an ill-defined problem since, depending on the
final application, different ways of partitioning the
same image can be considered correct. Hundreds
of automatic and semiautomatic segmentation
algorithms have been presented since the appearance
of the digital image. However, no single method can
be considered appropriate for all types of images.
Moreover, methods that have been designed for a
particular type of image might not be applicable to
other types.

Most traditional methods are based only on the
intensity information of pixels. Nonetheless, humans
use much more knowledge when performing manual
segmentation. For that reason, in recent years,
trainable methods have emerged as powerful tools to
include part of that knowledge in the segmentation
process and improve the accuracy of the labeled
regions. Algorithms to perform this task have been
developed principally for natural and medical images
but can be adapted for other types of image data
and transferred to platforms that are accessible to
both experienced and inexperienced users. Such
software should provide a user-friendly and intuitive
framework for prototyping and applying machine
learning algorithms to image data and visualizing
their results.

Platforms that build in machine
learning tools
Just a few software platforms partially provide both
machine learning and image processing tools. These
include commercial platforms (e.g., MATLAB,
MathWorks, Natick, MA) and open-source plaforms,
e.g., the Konstanz Information Miner (KNIME) by
Berthold et al. (2007), RapidMiner (http://rapid-i.
com), Vision with Generic Algorithms (VIGRA)
by Köthe (1999), and CellProfiler by Kamentsky
et al. (2011). Commercial platforms usually target
inexperienced users and a wide range of image types.
However, the details of the algorithms are hidden,
which is undesirable for use in scientific research.
Conversely, those details are available in open-source
platforms such as KNIME and RapidMiner, which is
becoming the world-leading open-source system for
data and text mining. Nevertheless, RapidMiner
is developed primarily by the machine learning
community for the machine learning community,
and its image processing extension by Burget et al.
(2010) provides only a minimal set of image tools.
This makes the platform less attractive for computer
scientists to use it to develop image segmentation
solutions. Other projects like VIGRA offer powerful
computer vision libraries with a focus on algorithms

Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Image Segmentation

© 2014 Arganda-Carreras

76

and data structures but no visualization tools or user-
friendly interfaces. And only a development version
of CellProfiler integrates VIGRA learning methods
into custom segmentation pipelines.

To address these deficiencies in the field, we started
the new open-source software project TWS. The
project combines the image processing toolkit Fiji
(Fiji Is Just ImageJ) by Schindelin et al. (2012), a
popular distribution of ImageJ by Rasband (1997–
2009), with the state-of-the-art machine learning
algorithms provided in the latest version of the
data mining and machine learning toolkit Waikato
Environment for Knowledge Analysis (WEKA) by
Hall et al. (2009). TWS provides a set of library
methods for extracting statistical properties of an
image from user-provided pixel samples and uses that
information to segment the rest of the pixels in that
image or a similar image. These methods are then
implemented in a modular and transparent way and
can be called up from any Fiji plugin, script, or macro.
TWS also provides a friendly graphical user interface
(GUI) for loading a two-dimensional (2D) image or
image stack and performing automatic segmentation
by interactive learning.

TWS came about through the perceived need of
a general purpose workbench that would allow
researchers from the imaging world to access state-
of-the-art techniques in machine learning to
improve their image segmentation results. This
need was observed by Burget et al. (2010), who
created an image processing extension for the
popular data mining software RapidMiner. Following
that innovation, Sommer et al. (2011) presented
ilastik, an interactive, user-friendly tool for image
classification and segmentation based on training a
random forest classifier on precomputed nonlinear
features. TWS provides both a set of library functions
to design experiments and algorithms, based on the
WEKA and Fiji platforms, and a complete GUI for
performing interactive and noninteractive learning.

Enhancing Fiji and WEKA
In the past four years, Fiji has become the software
of reference for many scientists to meet their image
analysis needs, especially in the field of biomedical
imaging. Fiji provides its users with powerful tools to
generate sophisticated image processing pipelines and
algorithms, via scripting languages and library methods
that can handle many types and sizes of images. At
the same time, WEKA is nowadays recognized as
a landmark system in data mining and machine
learning. It has achieved widespread acceptance
within academia and business circles, and has become
a widely used tool for data mining research.

However, little (if any) of the success of both
toolboxes would have been possible if they had not
been released as open-source software. Giving users
free access to the source code has enabled a thriving
community to develop and facilitated the creation
of many projects that incorporate or extend WEKA’s
existing functionalities. One of the best examples
of these projects is TWS, which combines both
toolboxes to enlarge their capabilities and increase
their impact and range of application. For WEKA
users and developers, TWS offers transparent access
to a whole new set of supervised and unsupervised
learning problems based on an arbitrarily large
number of image features. For Fiji users and
developers, respectively, TWS provides a new and
user-friendly way of performing image segmentation
and facilitates access to learning tools that can be
used to either enhance existing image processing
algorithms and pipelines or create new ones.

Implementation
Computing environment
TWS has been developed using the developing (but
stable) versions of Fiji and WEKA (version 3.7.6).
The only requirement to use TWS is to have Fiji
installed and up to date. In fact, given the cross-
platform nature of Fiji, it can be run with any Unix,
Macintosh, or Windows environment. The software
is distributed as open-source software with a detailed
user manual and multiple tutorials published in the
Fiji wiki (http://fiji.sc).

For basic users, TWS requires only basic experience
and knowledge of Fiji. The user should be familiar
with the simple interface of Fiji and its plugin system.
The TWS plugin can be run from the plugin menu
under the segmentation submenu. The user can then
interact with the GUI without the need for any
other Fiji commands (a detailed explanation is given
in the user manual). For more experienced users and
developers, the TWS library methods are accessible
from the scripting interpreters available in Fiji as
well as from any third-party script or plugin.

Data input/output
When the plugin is called up from the Fiji menu,
TWS runs on the current 2D (gray-scale or color)
image or stack of images. If no image data are
open, the plugin will ask for a file to load in any of
the multiple image formats compatible with Fiji.
The image feature information produced in the
interactive learning procedure can be saved and
loaded in the Attribute-Relation File Format (ARFF)
(Witten and Frank, 2005), which can also be loaded
and manipulated in the WEKA suite. The trained

NOTES

© 2014 Arganda-Carreras

77

models (classifiers and clusterers) can also be saved
and loaded in a WEKA-compatible format (.model).
This separation between feature data and models
enables full compatibility with the WEKA tools and
library methods. For instance, a user can save the
feature data of an experiment using the plugin’s GUI,
then load it into the WEKA experimenter to find the
most suitable classifier, and finally load the classifier
back into the GUI to use it in an arbitrary number
of images.

Image features
In computer vision, a feature is usually defined as
the part of an image of special interest, and image
features are used frequently as the starting point for
many algorithms. Therefore, the overall algorithm
will often only be as good as its feature detector. For
that reason, TWS includes a wide range of image
features, most of which are extracted using common
filters or plugins available in the Fiji core. By default,
more than 70 features are computed using generic
parameters and spherical filters with radii varying
from 1 to 16 pixels. The user has complete freedom
to select features and tune their scales and optional
parameters using either the settings dialog in the
GUI or the specific library methods.

Based on their purpose, the features available in
TWS can be grouped into the following types:

•	Edge detectors, which aim at indicating
boundaries of objects in an image. TWS includes,
among other edge detectors, Laplacian and Sobel
filters, difference of Gaussians, Hessian matrix
eigenvalues, and Gabor filters.

•	Texture filters, to extract texture information.
Among others, TWS provides a set of filters
including minimum, maximum, median, mean,
variance, entropy, structure tensor, etc.

•	Noise reduction filters, such as Gaussian blur,
bilateral filter, Anisotropic diffusion, Kuwahara,
and Lipschitz.

•	Membrane detectors, which localize membrane-
like structures of a certain size and thickness.

In addition to providing filters, TWS allows the user
to customize features. As described in the wiki, a
very simple script is needed to include user-defined
features in the segmentation process. As long as they
contain unique identifiers, an arbitrary number of new
features can be used either alone or in combination
with the existing filters. This opens the door to all
kinds of linear and nonlinear features that users can
externally create, including 3D features.

Segmentation by pixel classification
To segment the input image data, TWS transforms
the segmentation problem into a pixel classification
problem in which each pixel can be classified as
belonging to a specific segment or class. A set of input
pixels that has been labeled is represented in the feature
space and then used as the training set for a selected
classifier. Once the classifier is trained, it can be used to
classify either the rest of the input pixels or completely
new image data. The number and names of the
classes, together with the desired learning algorithm,
are defined by the user. All methods available in
WEKA can be used. These include a large variety
of supervised classification and regression algorithms
and clusterers. For a complete list, visit http://
wiki.pentaho.com/display/DATAMINING/Data+
Mining+Algorithms+and+Tools+in+Weka . Figure 1
describes the pixel classification scheme of TWS.

One of the strengths of the TWS toolbox is that
it allows different options to perform training and
testing. One possibility is to use the GUI following
an active learning approach. In a similar way to
ilastik (the image classification and segmentation
tool developed by Sommer et al., 2011), the user
is allowed to interactively provide training samples
while navigating the data, obtain on-the-fly test
results on the loaded input image, and retrain the
classifier as many times as needed. In this way, the
user can fine-tune the parameters of the classifier
and select labels until achieving satisfactory results.
More classical (not interactive) approaches are also
available via the library methods, allowing training
on arbitrarily large labeled data.

Creating your own algorithms
The segmentation of image data typically requires
applying a sequence of algorithms to many images
in a so-called pipeline. In Fiji, fast prototyping of
segmentation pipelines is facilitated via scripting,
which uses simple programming commands (or
scripts) to define sequences of operations that can be
applied to sets of images.

Scripting became popular among inexperienced
users thanks to the simple and friendly ImageJ
macro language, which allows users to record GUI
commands and rapidly construct basic programs.
TWS is not an exception, and all the user actions
in its GUI can be recorded and reproduced later in
a macro. Additionally, Fiji supports a broad range
of scripting languages, which can be used without
knowledge of Java (the native language of Fiji and
WEKA), and offers more advanced programming
capabilities than the macro language while keeping

Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Image Segmentation

© 2014 Arganda-Carreras

78

relative simplicity for the occasional programmer.
TWS makes extensive use of this functionality to
provide an ideal framework to rapidly prototype and
implement new algorithms. Individual commands
can be interactively tested on the current images
using the corresponding scripting language
interpreter. In addition, the script editor enables
writing, debugging, testing, and running arbitrarily
complex scripts in all the supported languages,
including Java itself. For example, it takes only
10 lines of code to load an image and its binary
labels to train a classifier on how to identify cells,
apply the trained classifier to a second image, and
extract each individual cell in the image by running
a watershed algorithm implementation (Tsukahara
et al., 2008) on the cell probability map (Fig. 2).

The details of the code or the chosen scripting
language are not relevant (TWS scripting tutorials
are available at http://fiji.sc/Scripting_the_Trainable_
Segmentation). All scripting languages in Fiji allow
users to access advanced image processing libraries
and now, thanks to TWS, to interact with the WEKA
machine learning algorithms without mastering Java
programming. Moreover, it is also possible to integrate
this functionality through the Fiji interfaces in other
image platforms such as MATLAB or ITK (Ibanez et
al., 2003).

Conclusion
We have presented TWS, a versatile tool for image
segmentation based on pixel classification. The
software has a library of methods and a GUI that
makes it easy to use without any programming
experience. This toolbox is an important addition
to the growing arsenal of segmentation plugins in
Fiji (fiji.sc/Category:Segmentation) for analyzing
biological and nonbiological image data. TWS is
designed to facilitate the integration of machine
learning schemes with image processing modules
into a pipeline. Researchers can easily prototype
segmentation algorithms using TWS methods with
any of the scripting languages available in Fiji.
Scripts are indeed vehicles of execution, but also act
as mechanisms for disseminating the new algorithm
or pipeline that are easily accessible by others.

TWS is intended to work as a bridge between the
machine learning and the biomedical imaging
communities, facilitating a framework to develop,
test, and apply novel solutions to the existing
segmentation challenges. The project is completely
open source, and we invite users and developers to
contribute to its growth.

NOTES

Figure 1. TWS pipeline for pixel classification. Image features are extracted from an input image using Fiji-native methods. Next,
a set of pixel samples is defined and represented as feature vectors, and a WEKA learning scheme is trained on those samples
and finally applied to classify the remaining image data. The input image in this example pipeline is a serial section from a trans-
mission electron microscopy dataset from the Drosophila first instar larva ventral nerve cord; its pixels are divided into three
classes: membrane, mitochondria, and cytoplasm.

© 2014 Arganda-Carreras

79Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Image Segmentation

Figure 2. Scripting your own algorithm. a, Example of BeanShell script that trains on a cell colony image (b) from the Broad Bioim-
age Benchmark Collection (Ljosa et al., 2012) and its corresponding binary labels (c) and then applies the trained classifier to a test
image (d) to obtain its in/out probability map (e). The algorithm finally runs watershed segmentation to extract the boundaries of the
cells (f) and labels the individual objects (g).

© 2014 Arganda-Carreras

80

References
Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T,

Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B
(2007) KNIME: The Konstanz Information
Miner in studies in classification, data analysis,
and knowledge organization (GfKL 2007). Berlin,
Heidelberg: Springer.

Burget R, Karásek J, Smékal Z, Uher V, Dostál O
(2010) RapidMiner Image Processing Extension: a
platform for collaborative research. International
Conference on Telecommunications and Signal
Processing, Baden, Austria, August 7–10.

Crepaldi L, Policarpi C, Coatti A, Sherlock WT,
Jongbloets BC, Down TA, Riccio A (2013)
Binding of TFIIIC to SINE elements controls the
relocation of activity-dependent neuronal genes to
transcription factories. PLoS Genetics 9:e1003699.

Dobens AC, Dobens LL (2013) FijiWings: an open
source toolkit for semiautomated morphometric
analysis of insect wings. G3 (Bethesda) 3:1443–
1449.

Favazza TL, Tanimoto N, Munro RJ, Beck SC,
Garrido MG, Seide C, Sothilingam V,
Hansen RM, Fulton AB, Seeliger MW, Akula JD
(2013) Alterations of the tunica vasculosa lentis
in the rat model of retinopathy of prematurity. Doc
Ophthalmol 127:3–11.

Felcht M, Luck R, Schering A, Seidel P, Srivastava K,
Hu J, Bartol A, Kienast Y, Vettel C, Loos EK,
Kutschera S, Bartels S, Appak S, Besemfelder E,
Terhardt D, Chavakis E, Wieland T, Klein C,
Thomas M, Uemura A, et al. (2012) Angiopoietin-2
differentially regulates angiogenesis through TIE2
and integrin signaling. J Clin Invest 122:1991–
2005.

Frank M, Duvezin-Caubet S, Koob S, Occhipinti A,
Jagasia R, Petcherski A, Ruonala MO, Priault M,
Salin B, Reichert AS (2012) Mitophagy is triggered
by mild oxidative stress in a mitochondrial fission
dependent manner. Biochim Biophys Acta
1823:2297–2310.

Hall M, Frank E, Holmes G, Pfahringer B,
Reutemann P, Witten I (2009) The WEKA data
mining software: an update. SIGKDD Explor
11:10–18.

Hart N, Huang L (2012) Monitoring nests of solitary
bees using image processing techniques. 19th
International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), Auckland,
New Zealand, November 28–30, 2012. IEEE
Explore, pp. 1–4.

Ibanez L, Schroeder W, Ng L, Cates J (2003)
The ITK software guide, Ed 2. Kitware Inc.

Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ,
Madden KL, Ljosa V, Rueden C, Eliceiri KW,
Carpenter AE (2011) Improved structure, function
and compatibility for CellProfiler: modular high-
throughput image analysis software. Bioinformatics
27:1179–1180.

Köthe U (1999) Reusable software in computer
vision. In: Handbook of computer vision and
applications, Vol 3, Systems and applications. San
Diego: Academic Press.

Krueger MA, Huke SS, Glenny RW (2013)
Visualizing regional myocardial blood flow in the
mouse. Circulation Res112:e88–e97.

Kulinowski P, Dorozynski P, Mlynarczyk A,
Weglarz WP (2011) Magnetic resonance imaging
and image analysis for assessment of HPMC matrix
tablets structural evolution in USP apparatus 4.
Pharm Res 28:1065–1073.

Laptev D, Vezhnevets A, Dwivedi S, Buhmann JM
(2012) Anisotropic ssTEM image segmentation
using dense correspondence across sections. In:
15th Annual Conference on Medical Image
Computing and Computer-Assisted Intervention
(MICCAI 2012), October 1–5, 2012, Nice,
France; pp. 323–330. Berlin, Heidelberg: Springer.

Ljosa V, Sokolnicki KL, Carpenter AE (2012)
Annotated high-throughput microscopy image
sets for validation. Nat Methods 9:637–637.

Macdonald W, Shefelbine S (2013) Characterising
neovascularisation in fracture healing with laser
Doppler and micro-CT scanning. Med Biol Eng
Comp 51:1157–1165.

Maiora J, Graña M (2012) Abdominal CTA image
analisys through active learning and decision
random forests: application to AAA segmentation.
In: The 2012 International Joint Conference on
Neural Networks (IJCNN), Brisbane, Australia,
June 10–15, 2012. IEEE Explore, pp. 1–7.

Mathew MD, Mathew ND, Ebert PR (2012).
WormScan: a technique for high-throughput
phenotypic analysis of Caenorhabditis elegans. PloS
One 7:e33483.

Rasband W (1997–2009) ImageJ. US National
Institutes of Health, Bethesda, Maryland.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V,
Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B, Tinevez JY, White DJ,
Hartenstein V, Eliceiri K, Tomancak P, Cardona A
(2012) Fiji: an open-source platform for biological-
image analysis. Nat Methods 9:676–682.

NOTES

