Skip to main content

Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification

Author(s): Arganda-Carreras, Ignacio; Kaynig, Verena; Rueden, Curtis; Eliceiri, Kevin W; Schindelin, Johannes; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xz5q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArganda-Carreras, Ignacio-
dc.contributor.authorKaynig, Verena-
dc.contributor.authorRueden, Curtis-
dc.contributor.authorEliceiri, Kevin W-
dc.contributor.authorSchindelin, Johannes-
dc.contributor.authorCardona, Albert-
dc.contributor.authorSeung, H Sebastian-
dc.date.accessioned2021-10-08T19:45:03Z-
dc.date.available2021-10-08T19:45:03Z-
dc.date.issued2017-08-01en_US
dc.identifier.citationArganda-Carreras, Ignacio, Verena Kaynig, Curtis Rueden, Kevin W. Eliceiri, Johannes Schindelin, Albert Cardona, and H. Sebastian Seung. "Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification." Bioinformatics 33, no. 15 (2017): 2424-2426. doi:10.1093/bioinformatics/btx180en_US
dc.identifier.issn1367-4803-
dc.identifier.urihttp://www.sfn.org/~/media/SfN/Documents/Short%20Courses/2014%20SC%202/SC%202%20Chapters/Ignacio%20ArgandaCarreras.ashx-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1xz5q-
dc.descriptionAvailability and Implementation TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation.en_US
dc.descriptionSupplementary information are available at Bioinformatics online at https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/33/15/10.1093_bioinformatics_btx180/3/btx180_supplementary_tws-manual.pdf?Expires=1611354059&Signature=vy5VA5X0EGaUKbtapTr65TZ6m3XlL9mQU8jF4ZxIZij3uaDMuWsto5xxg3joksyy0~k6SG3zlP-RBiRbLvCmx6lMqZKFsENENf5y9AcYg7hT7jT2c7Ic66IKFx9qFWnc~ij228z6mGnyoOT8B1P3QI0hyLu96Kysjbh6buBcbVOLbUQ90RPvx26IBDpv6vecG7rVKdUBBa-kMSoMmo75r-1F9vupHDm5bn~m6~JNpnVertSDuiZDEVqCfFfajOMDH8vkxakxtwq20Bou7MTHaX2AMsfKAqlTKnElNMlsLHVK8KqKDs7ONeqsJCllm2w-u--C8mhqC3PcaM-ym0sKmw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGAen_US
dc.description.abstractSummary State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers. Availability and Implementation TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation. Supplementary information Supplementary data are available at Bioinformatics online.en_US
dc.format.extent2424 - 2426en_US
dc.language.isoen_USen_US
dc.relation.ispartofBioinformaticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleTrainable Weka Segmentation: a machine learning tool for microscopy pixel classificationen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1093/bioinformatics/btx180-
dc.identifier.eissn1460-2059-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
TrainableWekaSegmentationMicroscopyPixelClassification.pdf549.26 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.