Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
Author(s): Arganda-Carreras, Ignacio; Kaynig, Verena; Rueden, Curtis; Eliceiri, Kevin W; Schindelin, Johannes; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xz5q
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arganda-Carreras, Ignacio | - |
dc.contributor.author | Kaynig, Verena | - |
dc.contributor.author | Rueden, Curtis | - |
dc.contributor.author | Eliceiri, Kevin W | - |
dc.contributor.author | Schindelin, Johannes | - |
dc.contributor.author | Cardona, Albert | - |
dc.contributor.author | Seung, H Sebastian | - |
dc.date.accessioned | 2021-10-08T19:45:03Z | - |
dc.date.available | 2021-10-08T19:45:03Z | - |
dc.date.issued | 2017-08-01 | en_US |
dc.identifier.citation | Arganda-Carreras, Ignacio, Verena Kaynig, Curtis Rueden, Kevin W. Eliceiri, Johannes Schindelin, Albert Cardona, and H. Sebastian Seung. "Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification." Bioinformatics 33, no. 15 (2017): 2424-2426. doi:10.1093/bioinformatics/btx180 | en_US |
dc.identifier.issn | 1367-4803 | - |
dc.identifier.uri | http://www.sfn.org/~/media/SfN/Documents/Short%20Courses/2014%20SC%202/SC%202%20Chapters/Ignacio%20ArgandaCarreras.ashx | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1xz5q | - |
dc.description | Availability and Implementation TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation. | en_US |
dc.description | Supplementary information are available at Bioinformatics online at https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/33/15/10.1093_bioinformatics_btx180/3/btx180_supplementary_tws-manual.pdf?Expires=1611354059&Signature=vy5VA5X0EGaUKbtapTr65TZ6m3XlL9mQU8jF4ZxIZij3uaDMuWsto5xxg3joksyy0~k6SG3zlP-RBiRbLvCmx6lMqZKFsENENf5y9AcYg7hT7jT2c7Ic66IKFx9qFWnc~ij228z6mGnyoOT8B1P3QI0hyLu96Kysjbh6buBcbVOLbUQ90RPvx26IBDpv6vecG7rVKdUBBa-kMSoMmo75r-1F9vupHDm5bn~m6~JNpnVertSDuiZDEVqCfFfajOMDH8vkxakxtwq20Bou7MTHaX2AMsfKAqlTKnElNMlsLHVK8KqKDs7ONeqsJCllm2w-u--C8mhqC3PcaM-ym0sKmw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA | en_US |
dc.description.abstract | Summary State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers. Availability and Implementation TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation. Supplementary information Supplementary data are available at Bioinformatics online. | en_US |
dc.format.extent | 2424 - 2426 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Bioinformatics | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1093/bioinformatics/btx180 | - |
dc.identifier.eissn | 1460-2059 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TrainableWekaSegmentationMicroscopyPixelClassification.pdf | 549.26 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.