Skip to main content

Engineering Dynamical Sweet Spots to Protect Qubits from 1/f Noise

Author(s): Huang, Ziwen; Mundada, Pranav S; Gyenis, András; Schuster, David I; Houck, Andrew A; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1td9n79t
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Ziwen-
dc.contributor.authorMundada, Pranav S-
dc.contributor.authorGyenis, András-
dc.contributor.authorSchuster, David I-
dc.contributor.authorHouck, Andrew A-
dc.contributor.authorKoch, Jens-
dc.date.accessioned2024-01-20T00:25:22Z-
dc.date.available2024-01-20T00:25:22Z-
dc.identifier.citationHuang, Ziwen, Mundada, Pranav S, Gyenis, András, Schuster, David I, Houck, Andrew A, Koch, Jens. (Engineering Dynamical Sweet Spots to Protect Qubits from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>f</mml:mi></mml:math> Noise. Physical Review Applied, 15 (3), 10.1103/physrevapplied.15.034065en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1td9n79t-
dc.description.abstractProtecting superconducting qubits from low-frequency noise is essential for advancing superconducting quantum computation. Based on the application of a periodic drive field, we develop a protocol for engineering dynamical sweet spots, which reduce the susceptibility of a qubit to low-frequency noise. Using the framework of Floquet theory, we prove rigorously that there are manifolds of dynamical sweet spots marked by extrema in the quasienergy differences of the driven qubit. In particular, for the example of fluxonium biased slightly away from half a flux quantum, we predict an enhancement of pure dephasing by 3 orders of magnitude. Employing the Floquet eigenstates as the computational basis, we show that high-fidelity single- and two-qubit gates can be implemented while maintaining dynamical sweet-spot operation. We further confirm that qubit readout can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently applying standard measurement techniques. Our work provides an intuitive tool to encode quantum information in robust, time-dependent states, and may be extended to alternative architectures for quantum-information processing.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Applieden_US
dc.rightsAuthor's manuscripten_US
dc.titleEngineering Dynamical Sweet Spots to Protect Qubits from 1/f Noiseen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/physrevapplied.15.034065-
dc.date.eissued2021-03-22en_US
dc.identifier.eissn2331-7019-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
fermilab-pub-21-481-v.pdf2.81 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.