
Engineering Dynamical Sweet Spots to Protect Qubits from 1/f Noise

Ziwen Huang,1 Pranav S. Mundada,2 András Gyenis,2 David I. Schuster,3 Andrew A. Houck,2 and Jens Koch1, 4

1Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

3The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
4Northwestern–Fermilab Center for Applied Physics and Superconducting Technologies,

Northwestern University, Evanston, Illinois 60208, USA

Protecting superconducting qubits from low-frequency noise is essential for advancing superconducting quan-
tum computation. Based on the application of a periodic drive field, we develop a protocol for engineering
dynamical sweet spots which reduce the susceptibility of a qubit to low-frequency noise. Using the framework
of Floquet theory, we prove rigorously that there are manifolds of dynamical sweet spots marked by extrema in
the quasi-energy differences of the driven qubit. In particular, for the example of fluxonium biased slightly away
from half a flux quantum, we predict an enhancement of pure-dephasing by three orders of magnitude. Employ-
ing the Floquet eigenstates as the computational basis, we show that high-fidelity single- and two-qubit gates
can be implemented while maintaining dynamical sweet-spot operation. We further confirm that qubit readout
can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently
applying standard measurement techniques. Our work provides an intuitive tool to encode quantum informa-
tion in robust, time-dependent states, and may be extended to alternative architectures for quantum information
processing.

I. INTRODUCTION

Low-frequency noise has been a limiting factor for dephas-
ing times of many solid-state based qubits [1–36]. Supercon-
ducting qubits especially suffer from 1/f charge and flux noise
[1–22]. A conventional way to improve dephasing times is to
operate the qubit at so-called sweet spots [5–9]. These sweet
spots correspond to extrema of the qubit’s transition frequency
[5], see Fig. 1(a) for an example. Another established method
for improving dephasing times is dynamical-decoupling (DD)
[18, 37–41], which is well-known in the context of NMR echo
sequences [42–44], and has been successfully applied to su-
perconducting qubits [18, 38].

In this paper, we propose a qubit protection protocol based
on dynamical sweet spots [19–24]. Inspired by static sweet-
spot operation and dynamical decoupling, this protocol em-
ploys a periodic drive to mitigate the dephasing usually in-
duced by 1/f noise. Utilizing Floquet theory, we show that
dynamical sweet spots represent extrema in the qubit’s quasi-
energy difference, and thus generalize the concept of static
sweet spots [Fig. 1(b)]. Notably, dynamical sweet spots are
generally not isolated points, but rather form extended sweet-
spot manifolds in parameter space. The multi-dimensional na-
ture of dynamical sweet spots provides additional freedom to
tune qubit properties such as the transition frequency while
maintaining dynamical protection. We show that dynamical
sweet-spot operation can simultaneously yield both long de-
polarization (T1) and pure-dephasing times (Tφ).

This protection scheme can also be interpreted as a contin-
uous version of DD [45]. Here, the sequences of ultra-short
pulses widely used in many DD experiments are replaced by
a periodic drive on the qubit, which is much easier to realize
experimentally. In addition to earlier explorations in this di-
rection [5, 19–27, 46–49], we here provide a systematic and
general framework for locating dynamical sweet-spot mani-
folds in the control parameter space. This framework is gen-
eral enough to cover a variety of qubit systems beyond the spe-

cific example discussed here, and can be adapted to different
types of drives as well as noise environments. Indeed, some of
the previously developed protection schemes [5, 19–23, 46–
49] based on qubit-frequency modulation or on-resonant Rabi
drives, can be understood as special limits of the framework
presented here (see Supplemental Material [50] for details).
The theoretical approach we develop allows us not only to
predict the improvement of pure-dephasing times, but also to
assess how dynamical depolarization times are affected by the
driving. We further show that the protection scheme is com-
patible with concurrent single- and two-qubit gate operations,
thus making it suitable for both quantum information storage
and processing. In a companion experimental paper [51], our
theoretical results are demonstrated to lead to a significant im-

FIG. 1. (a) Static fluxonium spectrum as a function of magnetic
flux. Insets show the qubit eigenfunctions at the sweet spot and
slightly away from it (φdc/2π = 0.52). The parameters used are:
EC/h = 0.5 GHz, EJ/h = 4.0 GHz and EL/h = 1.3 GHz for the
capacitive, Josephson and inductive energy, respectively. (b) Quasi-
energy spectrum of the driven qubit for flux φac/2π = 0.028 and
drive frequency ωd/2π = 490 MHz. The highlighted regions in both
panels mark the flux sweet spots. The drive produces numerous dy-
namical sweet spots at different dc flux values, as opposed to only
one in the static case.
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provement in the dephasing time of a flux-modulated fluxo-
nium qubit.

The paper is structured as follows. Throughout this paper,
we consider the superconducting fluxonium qubit [7, 8, 12–
14, 17, 34, 52–54] a platform for illustrating the dynamical-
protection protocol. We begin in Section II, with a descrip-
tion of this qubit and discuss its static coherence times in the
absence of external driving. In Section III, we employ Flo-
quet theory to derive expressions for the dynamical coherence
times of the driven qubit. We then evaluate these expressions
numerically in Section IV, and discuss the nature of the ob-
served dynamical sweet spots associated with increases in co-
herence times. We illustrate how to perform gate operations
and readout on such a driven qubit (Floquet qubit) in Section
V, and further show how to implement a Floquet two-qubit
gate in Section VI. Finally, we present our conclusions in Sec-
tion VII.

II. TWO-LEVEL SYSTEM SUBJECT TO 1/f NOISE

For concreteness, we discuss the application of the pro-
tection scheme to the most recent genereation of fluxonium
qubits [7, 8, 12–14, 17, 34, 52–54], though the general theoret-
ical framework is not limited to this choice. Fluxonium qubits
biased close to half-integer flux exhibit attractive properties
including increased coherence times as compared to other su-
perconducting qubits [7, 8, 12, 13, 51, 53]. When the external
flux bias in the circuit loop is tuned to the sweet spot at half a
flux quantum, both depolarization and dephasing times of the
fluxonium circuit exceed 100µs and is strongly anharmonic
[7, 8, 51]. However, this sweet spot is point-like, and the qubit
regains sensitivity to 1/f flux noise when the external flux
is tuned slightly away from the half-integer point [7, 8, 12–
14, 17]. This sensitivity leads to increased pure dephasing of
the fluxonium qubit. We note that in multi-loop circuits with
shared inductance, the local nature of 1/f flux noise produces
further constraints on the existence of static flux sweet spots
[17]. It is thus desirable to find alternative means of protec-
tion from 1/f flux noise, in order to improve coherence times,
and advance the promising direction of quantum-information
processing with fluxonium qubits.

Our protection scheme is based on introducing a modula-
tion of the external flux close to the static sweet spot, i.e.,
φext(t) = φac cos(ωdt) + φdc. Here, φext = 2πΦext/Φ0 de-
notes the reduced external flux, Φ0 is the flux quantum, and
φac, φdc are its ac modulation amplitude and dc offset, respec-
tively. Upon truncation to two levels, the effective Hamilto-
nian of the driven fluxonium circuit is given by

Ĥq(t) =
∆

2
σ̂x +

(
A cosωdt+

B

2

)
σ̂z, (1)

see Appendix A for details. Here, ∆ denotes the qubit split-
ting at φdc = π, and A ∝ φac and B ∝ δφdc = φdc − π
are the effective drive amplitude and dc bias away from the
static sweet spot. Note that we also set ~ = 1 in this expres-
sion. The resulting eigenenergies of the static qubit (φac = 0)

are plotted in Fig. 1(a) as a function of φdc. The full Hamil-
tonian including the qubit-bath coupling is given by Ĥ =

Ĥq(t) + ĤB + Ĥint, where HB and Hint denote the Hamil-
tonian of the bath and the qubit-bath interaction. We consider
two major noise sources that often limit fluxonium coherence
times: 1/f flux noise and dielectric loss [7, 8, 13–16]. The
corresponding interaction Hamiltonian thus takes the form
Ĥint = (η̂f + η̂d)σ̂z , where η̂f and η̂d are the bath operators
through which 1/f flux noise and dielectric loss are induced.
The noise spectra characterizing these channels are given by
Sf(ω) = A2

f |ω/2π|−1 and Sd(ω) = α(ω, T )Ad(ω/2π)
2

[55]. Here, α(ω, T ) = | coth(ω/2kBT ) + 1|/2 is a thermal
factor, kB and T denote the Boltzmann constant and tempera-
ture, and Af and Ad denote the noise amplitudes.

As reference for our discussion of dynamical coherence
times in Secs. III and IV, we first briefly review the static co-
herence times of the undriven qubit. The decoherence rates
depend on the matrix elements of the qubit operator coupling
to the noise as well as the noise spectra. For a non-singular
noise spectrum S(ω), the rates for relaxation, excitation and
pure dephasing are

γ∓ = |σge
z |2 S(±Ωge), (2)

γφ = |σee
z − σgg

z |2 S(0)/2. (3)

As usual, these expressions are derived within Bloch-Redfield
theory. Here, |g〉 and |e〉 denote the qubit ground and first
excited state, Ωge =

√
∆2 +B2 the corresponding eigenen-

ergy difference, and σll′
z ≡ 〈l|σ̂z|l′〉 (l, l′ = g, e) the rele-

vant matrix elements. (Since these matrix elements will ap-
pear rather frequently, we choose to introduce this slightly
more compact notation.) The quantity |σee

z − σgg
z | gov-

erning the pure-dephasing rate γφ turns out to be propor-
tional to the flux dispersion of the eigenenergy difference
|∂Ωge/∂φdc|, in agreement with the well-known proportion-
ality γφ ∝ (∂Ωge/∂φdc)

2 [5, 6]. For the realistic noise spec-
trum S(ω) = Sd(ω)+Sf(ω), however, there is a divergence at
ω = 0 from the 1/f flux noise. In this case, our evaluation of
dephasing times includes careful consideration of frequency
cutoffs, see Refs. [5, 6, 20, 56].

The resulting coherence times differ characteristically ac-
cording to the flux bias. Away from the flux sweet spot,
the qubit has wavefunctions with disjoint support [insets of
Fig. 1(a)]. This leads to a suppression of the coefficient |σge

z |2
relevant for relaxation and excitation, and hence to a relatively
long depolarization time of T1 = 770µs (see Table I caption
for our specific choice of parameters). The pure-dephasing
time of Tφ = 0.88µs is rather short, on the other hand, since
the flux dispersion ∂Ωge/∂φdc is significant away from the
flux sweet spot. At the flux sweet spot, the situation changes:
disjointness of eigenfunctions is lost and depolarization times
are correspondingly shorter, T1 = 360µs. Since the flux dis-
persion ∂Ωge/∂φdc vanishes at the sweet spot, the qubit is
less sensitive to 1/f noise, resulting in a pure-dephasing time
exceeding 10ms [7, 57], limited only by second-order contri-
butions from 1/f flux noise. In realistic settings, the pure-
dephasing times will be limited by other sources including
photon shot noise, critical current noise, etc [35, 36, 58, 59].
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III. DYNAMICAL COHERENCE TIMES OF THE DRIVEN
QUBIT

The analysis of coherence times must be modified when in-
cluding a periodic drive acting on the qubit. Based on an open-
system Floquet theory [60, 61], the coherence times are most
conveniently characterized in the basis formed by the qubit’s
Floquet states. The quasi-energies εj and time-periodic Flo-
quet states |wj(t)〉 of the driven qubit, labeled by index j, are
the counterparts of the ordinary eigenstates and eigenenergies
in the undriven case [61–64]. They are obtained as solutions
of the Floquet equation

[
Ĥq(t)− i

∂

∂t

]
|wj(t)〉 = εj |wj(t)〉. (4)

In the absence of noise, the evolution operator Uq(t, 0) =∑
j=0,1 |wj(t)〉〈wj(0)| exp(−iεjt) governs the evolution of

the driven qubit. As a result, the population in each Floquet
state remains invariant, while the relative phase accumulates
at a rate given by the quasi-energy difference ε01 ≡ ε1 − ε0.

The matrix elements and noise frequencies relevant for the
decoherence of the driven qubit crucially differ from the un-
driven case. By casting the expression for the decoherence
rates into the form

γµ =

∫ ∞

−∞
Fµ(ω)S(ω)dω, (5)

these differences are conveniently captured as a change in the
filter function Fµ(ω) [15, 65]. Here, µ = ∓, φ denotes the
different noise channels corresponding to relaxation, excita-
tion and pure dephasing.

For the undriven qubit, Fµ(ω) is strongly peaked at the
filter frequencies ω = ±Ωge and ω = 0. The integrated
peak areas, referred to as weights, are given by the quan-
tities |σge

z |2, |σeg
z |2 and |σee

z − σgg
z |2/2 associated with the

three noise channels. By contrast, for the driven qubit,
Fµ(ω) ∼

∑
k |gkµ|2δ(ω− ω̄kµ) develops additional sideband

peaks, resulting in filter frequencies ω̄k∓ = ±ε01 + kωd and
ω̄kφ = kωd (k ∈ Z). The corresponding weights are |gk∓|2
and 2|gkφ|2, where

gk+ =
ωd

2π

∫ 2π/ωd

0

dt eikωdt Tr (σz|w0(t)〉〈w1(t)|) , (6)

and similar expressions hold for gk,− and gk,φ (see Appendix
B). Expressed in terms of these weights, the decoherence rates
are given by

γ∓ =
∑

k∈Z
|gk∓|2S(kωd ± ε01), (7)

γφ =Af |2g0φ|
√
| lnωirtm|+

∑

k 6=0

2|gkφ|2S(kωd), (8)

where the infrared cutoff ωir and a finite measurement time tm
are introduced to regularize the singular behavior of the 1/f
noise spectrum (see Appendix C). We note that Eqs. (7) and
(8) are based on the rotating-wave approximation described in

Appendix B. Further, it is instructive to mention that the ex-
pressions for the dynamical rates [Eqs. (7) and (8)] reduce to
the rates obtained for the static case when the drive is switched
off (A = 0). To see this, note that the Floquet states are time-
independent for A = 0. As a result, the filter weights vanish
for k 6= 0 [see, for example, Eq. (6)]. The remaining quanti-
ties to be identified are simply: ±Ωge ↔ ω̄0∓, 0 ↔ ω̄0φ, and
|σge

z |2, |σeg
z |2, |σee

z − σgg
z |2/2 ↔ |g0∓|2 and 2|g0φ|2.

IV. DYNAMICAL SWEET SPOTS

We numerically calculate the dynamical coherence times
as a function of drive frequency and amplitude, for a flux
bias fixed close to the half-integer point. Results of pure-
dephasing times are presented in Fig. 2 (a), and show broad
regions where Tφ = γ−1

φ remains close to the value of the
undriven qubit, but also exhibit well-defined maxima where
pure-dephasing times exceed 1ms. (This value is based on
the noise sources included in our analysis, but may ultimately
be limited by other noise channels.) Fig. 2(b) shows the cor-
responding depolarization times T1 = (γ+ + γ−)−1. While
there are point-like dropouts of T1 for certain drive parame-
ters, the majority of the predicted T1’s are well over 100µs.
Table I summarizes the coherence times for two example
working points 1© and 2© aligned with local maxima of Tφ.
The pure-dephasing times for both points exceed 1ms, much
longer than those of the undriven qubit. The depolarization
times at those two points are around 500µs, which are favor-
able compared to the static sweet-spot value.

TABLE I. Calculated coherence times for four operating points.
Without a drive and operated away from the sweet spot (δφdc =
0.02), the qubit has the longest T1 but the shortest Tφ. At the sweet
spot, this behavior reverses: the static T1 reaches maximum values,
but Tφ becomes relatively short. By comparison, Floquet opera-
tion at dynamical sweet spots yields T1 and Tφ values that do not
exceed the static maximal values, but are well above the minimal
ones. [Underlying parameter choices: The noise amplitudes used
are Ad = π2 tan δC|ϕ̃ge|2/EC and Af = 2πδfEL|ϕ̃ge|, where
ϕ̃ge = 〈g|ϕ̂|e〉 is evaluated at φdc/2π = 0.5, and ϕ̂ is the phase
operator. We assume the loss tangent tan δC = 1.1 × 10−6, flux-
noise amplitude δf = 1.8× 10−6, and a temperature of 15 mK. The
noise parameters used here are typical for recent fluxonium experi-
ments, see e.g., Ref. [7, 8].]

Working points T1 (µs) Tφ (µs)
Away from the static sweet spot 770 0.88

Dynamical sweet spot 1© 590 1200
Dynamical sweet spot 2© 490 1750

Static sweet spot 360 >104
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A. Asymptotic behavior of sweet manifolds for weak and
strong drive

The regions where Tφ becomes maximal, form curves in the
plane spanned by the drive frequency and amplitude, with dis-
tinct behavior in the two regimes of weak driving, A � Ωge

[bottom of Fig. 2(a)], and strong driving, A & Ωge [top of
Fig. 2(a)]. These curves are the cross-sections of the sweet-
spot manifolds at a fixed dc flux value δφdc, see Fig. 2(c). The
curves of maximal pure-dephasing times show simple asymp-
totic behavior in these two limits, where they approach fixed-
frequency intercepts in the A–ωd plane. In the strong-drive
limit, these curves are interrupted by cuts (see white arrows)
where the width of the peak in Tφ(ωd)|A=const goes to zero.
No such cuts are present in the weak-drive regime; rather, the
peak width gradually decreases as drive amplitude A is low-
ered.

This behavior of pure-dephasing times of the driven qubit
can be explained and approximated analytically using Floquet
theory. Away from dynamical sweet manifolds, Tφ is lim-
ited by contributions from the (regularized) pole of the 1/f
spectrum, see the first term on the right-hand side of Eq. (8).
Thus, γφ ∝ |g0φ| which in turn can be shown to be propor-
tional to ∂ε01/∂φdc (see derivation in Appendix D), i.e., the
dynamical flux-noise sensitivity given by the flux dispersion
of the Floquet quasi-energy difference. We emphasize that
this result is analogous to the more familiar case of the un-
driven qubit, where the pure-dephasing rate is proportional to
the static flux dispersion ∂Ωge/∂φdc, with quasi-energies re-
placed by eigenenergies.

Pure-dephasing times are maximal whenever

∂ε01
∂φdc

∝ |g0φ| = 0, (9)

which generically occurs at avoided crossings in the extended
quasi-energy spectrum [Fig. 1(b)]. The latter, analogous to the
extended Brillouin zone in spatially periodic systems, con-
sists of the extended set of quasi-energies εj,n = εj + nωd

(n ∈ Z) [61, 62, 66]. This extended spectrum shows numer-
ous avoided level crossings, and hence a multitude of regions
of maximal Tφ. These operation points are called dynamical
sweet spots; see Refs. [19, 23, 24] for previous studies of this
concept. Here, we specifically use this term to refer to the
working points where the derivative of ε01 with respect to the
noise parameter vanishes.

As shown in Fig. 2(a), these spots form a set of curves with
maximal Tφ in the A-ωd plane. Once we account for the addi-
tional perpendicular axis representing B, we find that each
curve is the cross-section of a continuous surface of sweet
spots, which we refer to as a sweet-spot manifold. The lo-
cations of sweet spots can be predicted in the limits of weak
and strong drive, by treating either the drive A cosωdt σ̂z or
the transverse qubit Hamiltonian ∆ σ̂x/2 perturbatively.

Weak-drive limit.— For A � Ωge, the unperturbed quasi-
energies are the static eigenenergies up to the addition of in-
teger multiples of the drive frequency, ε±,n = ±Ωge/2 +
nωd (n ∈ Z). Two levels exhibit a crossing, ε+,n = ε−,n′ ,
whenever the qubit frequency is an integer multiple of the

1©

2©

1©

2©

ωd (2π ×GHz)

φ
a
c
/2
π
∼

A

0.1 0.3
0.5 0.7 0.9

0.025

0.015

0.02
0.01

0.03

0.05

0.07

δφdc/2π ∼ B

δφdc/2π = 0.02

FIG. 2. (a) Dynamical pure-dephasing time Tφ (color-coded) as a
function of drive frequency ωd (horizontal axis) and drive ampli-
tude A (vertical axis). Results are calculated via Eq. (8) for flux
δφdc/2π = 0.02. The curves visible by their bright-yellow coloring
are the dynamical sweet spots characterized by large Tφ. In the weak
(A � Ωge) and strong drive limit (A & Ωge) these curves asymp-
totically line up with ωd = Ωge/m and ωd = B/m (black arrows).
The curves formed by the dynamical sweet spots are interrupted by
cuts marked by white arrows. The overlaid white dotted curves de-
pict the ac dynamical sweet spots corresponding to ∂ε01/∂φac = 0.
(b) Depolarization time T1 calculated by Eq. (7). The majority of the
obtained T1 values are at the order of 500µs, except for point-like
dropouts shown by the dark-blue coloring. The red star and triangle
specify the dynamical sweet spots 1© and 2©. The noise parameters
used for the calculation are given in the caption of Table I. (c) Sweet-
spot manifolds embedded in the 3d parameter space, with axes corre-
sponding to ωd, δφdc and φac. The semi-transparent plane given by
δφdc/2π = 0.02, intersects the manifolds and thus yields the sweet-
spot curves shown in (a) as cross sections (bright-yellow coloring).
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drive frequency, Ωge = mωd wherem = n′−n ∈ N. The per-
turbation lifts these degeneracies and generates avoided cross-
ings. As a result, the sweet spots observed towards the bottom
of Fig. 2(a) asymptotically take the form of vertical lines at
drive frequencies set by ωd = Ωge/m. The width of max-
ima in Tφ(ωd) is significant for the issue of parameter devi-
ations: the wider the maximum, the larger is the robustness
of the coherence-time increase with respect to small detun-
ings from the dynamical sweet spot. This width is propor-
tional to the gap size of the avoided crossing and given by
∆m ≈ Am| sin θ cosm−1 θ|/ωm−1

d (m−1)! in the weak-drive
limit, where θ = tan−1(∆/B) (see derivation in Appendix
D). For decreasing drive strength A, the width narrows with
∼ Am consistent with the behavior observed in Fig. 2(a).

Strong-drive limit.— For A & Ωge, the unperturbed quasi-
energies are given by ε±,n = ±B/2 + nωd (n ∈ Z) and
cross whenever B = mωd (m ∈ N) [62, 64, 67, 68]. The
perturbation ∆σ̂x/2 generically opens up gaps. The result-
ing sweet spots asymptotically line up with vertical intercepts
ωd = B/m, as shown in Fig. 2(a). The proportionality be-
tween the width of the maximal Tφ and the gap size also holds
in this limit, with the latter given by ∆m ≈ ∆|Jm(2A/ωd)|
(see derivation in Appendix D). Whenever ∆m = 0, i.e.,
2A/ωd is one of the roots of the Bessel function Jm, the width
goes to zero and the sweet-spot curve is interrupted with a cut.

The dropouts of T1 visible in Fig. 2(b) are similarly related
to the vanishing gap size of the avoided crossings. If the gap
opening of the avoided crossing, i.e., the quasi-energy differ-
ence of the qubit at the dynamical sweet spot becomes smaller,
the terms |g0∓|2S(±ε01) in Eq. (7) rapidly increase in mag-
nitude as the regularized divergence of S(ω) is sampled. In
other words, the low-frequency 1/f noise significantly sup-
presses the dynamical T1 whenever ε01 vanishes. Therefore,
the low-T1 features observed in Fig. 2(b) match the locations
of strong narrowing of the maximal Tφ regions in Fig. 2(a)
(∆m → 0), including the discussed cuts in the strong-drive
limit, as well as the gradual narrowing in the weak-drive limit.
In our example, the widths of Tφ peaks surrounding the sweet-
spot manifolds are generally sufficiently wide and, hence, gap
sizes sufficiently large, such that 1/f flux noise does not limit
the dynamical T1.

Driving the qubit, as discussed above, efficiently decouples
it from the low-frequency dc flux noise. Recent experimental
evidence points to the relevance of additional noise in the ac
drive amplitude [19–22, 51]. While the magnitude and power
spectrum of this noise are not well established, it is useful
to note that there exist simultaneous sweet spots for the dc
and ac flux amplitude, ∂ε01/∂φdc = ∂ε01/∂φac = 0. These
doubly-sweet spots correspond to intersection points of the
white dotted curves (∂ε01/∂φac = 0) and the underlying dc
sweet-spot curves obtained for ∂ε01/∂φdc = 0 [see Fig. 2(a)]
[69]. Depending on the magnitude of this ac noise, we expect
such doubly-sweet spots to form the optimal working points.

1© 2©

FIG. 3. Noise spectra and filter weights centered at the correspond-
ing filter frequencies. The panels refer to four different working
points: (a) the static sweet spot, (b) static operation away from the
sweet spot (φdc/2π = 0.52), (c)-(d)dynamical sweet-spot operation
at the working points 1© and 2©. The symbols represent relaxation
(blue squares), excitation (red diamonds), and pure dephasing (pur-
ple dots). The noise spectrum is plotted concurrently in (a)-(d). The
positions of filter frequencies and the associated filter weights de-
termine which components of the noise spectrum contribute signifi-
cantly to the rates γ± and γφ [see Eqs. (7) and (8)]. (See the main
text for the discussion of filter frequencies marked by arrows.)

B. Interpretation of coherence times in terms of filter functions

We observe that, although the obtained dynamical T1 and
Tφ times in the sweet manifolds do not exceed the maximal
values at the two static working points (see Table I), they are
well above the corresponding static minimal values. To un-
derstand this behavior, it is instructive to interpret the deco-
herence rates in terms of the sampling of the noise spectrum
by the filter function [Eq. (5)]. For that purpose, Fig. 3 shows
the noise spectrum S(ω) along with information character-
izing the filter function Fµ(ω) in terms of the relevant filter
frequencies and weights. The noise spectrum (black curve) is
peaked at ω = 0 due to the 1/f flux noise; away from that
peak, dielectric loss dominates. For each filter frequency, the
value of the corresponding filter weight is shown and marked
by symbols distinguishing between depolarization and pure-
dephasing channels. While there are only three filter frequen-
cies in the static case, the dynamical case in principle pro-
duces an infinite number of filter frequencies ω̄kµ. The ap-
pearance of additional filter frequencies corresponds to the
sampling of the noise spectral density at sideband frequen-
cies, a point previously discussed for weakly driven systems
in Refs. [47–49].

We first interpret the behavior of pure-dephasing times. The
weight related to filter frequency ω̄0φ is suppressed to zero for
both static and dynamical sweet spots [see Fig. 3(a),(c),(d)],
but is large for the working point away from sweet spot [see
Fig. 2(b)]. This weight reflects the qubit’s sensitivity to 1/f
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flux noise. Therefore, the Tφ times at the sweet spots (both
static and dynamical) are significantly longer than the one at
the non-sweet spot. Compared with Tφ at the static sweet
spot, the dynamical sweet spots exhibit somewhat lower val-
ues of Tφ. This is related to the small but nonzero pure-
dephasing weights at filter frequencies ω̄kφ 6= 0, absent for
static sweet spots. Figure 3(c) illustrates this for the working
point 1©, where the relevant weights resulting in the dynam-
ical Tφ ≈ 1ms are marked by single-headed arrows. (The
same reasoning applies to the other working point 2©.)

The behavior of depolarization times T1 at and away from
sweet spots is reversed relative to that of Tφ. Specifically, T1
is longest at the static non-sweet spot, where disjoint support
of wave functions leads to the strongly suppressed weights
marked by double-headed arrows in Fig. 3(b). By contrast,
depolarization weights for sweet spots [both static and dynam-
ical, Figs. 3(a),(c)] are not subject to this suppression and pro-
duce correspondingly lower T1. [The T1 trend obtained from
the analysis of weight suppression is partially offset by the
fact that S(ω) is filtered at different frequencies in the sweet-
spot vs. non-sweet-spot case.] Next, the comparison shows
that the static depolarization time at the sweet spot is smaller
than the dynamical T1. The reason for this can be traced to the
difference in filter frequencies and corresponding magnitudes
of the noise power spectrum, see Fig. 3(a) vs. (c). In the static
case, the filter frequencies for depolarization are ±Ωge, and
S(±Ωge) is relatively large compared to the dynamical case
in 3(c) where the dominant contributions arise from S(ω̄0±).
Indeed, these latter contributions closely match the minima of
the noise power spectrum – a situation which can be estab-
lished simply by tuning the drive parameters.

Inspection of Tab. I reveals a trend of T1 and Tφ being anti-
correlated: larger T1 tend to coincide with with smaller Tφ
and vice versa. This trend originates from the conservation of
the cumulative filter weight,

(W+ +W−) +Wφ = 2, (10)

where W± =
∑

k |gk±|2 governs depolarization and Wφ =∑
k 2|gkφ|2 pure dephasing. (A proof of this conservation law

is given in Appendix C.) Increases in depolarization weights
thus go along with decreases in the pure-dephasing weight,
creating a tendency for trade-off between depolarization and
dephasing which is exact only in the special case of white
noise. This conservation rule is analogous to the sum rule
that emerges in the context of dynamical decoupling [18, 39].
It is crucial that the conservation rule applies to filter weights
rather than the rates. This enables one to manipulate the dis-
tribution of weights and filter frequencies to our advantage,
putting the largest weights at or near minima in the noise spec-
trum.

For simplicity, our discussion has been based exclusively
on a two-level approximation of the fluxonium qubit. In gen-
eral, the presence of higher qubit levels can induce leakage
to states outside the computational subspace. This concern is
less significant for qubits with relatively large anharmonicity
like the fluxonium circuit considered here. Through numer-
ical calculations including higher levels we have confirmed
that this leads to quantitative changes of the dynamical deco-

herence rates above, but does not affect the results reported
above qualitatively.

V. GATES AND READOUT OF A SINGLE FLOQUET
QUBIT

The above results suggest that use of the driven Floquet
states as computational qubit states can be advantageous due
to the long coherence times reached at the dynamical sweet
spots. We refer to this dynamically protected qubit as the Flo-
quet qubit, which belongs to the broader class of dressed-state
qubits. A host of previous work has studied gate operations
on such dynamically encoded qubits [25, 26, 70–72]. Here,
we specifically discuss how to maintain dynamical-sweet-spot
operation while performing gates in order to maximize protec-
tion from 1/f noise. In the following, we show that Floquet
qubits can easily be integrated into gate and readout protocols
necessary for quantum-information processing.

A. Gate operations

We show that we can realize direct single-qubit gates on the
Floquet qubit. For example, X and

√
X gates can be realized

by inducing Rabi oscillations among Floquet eigenstates. This
is accomplished by applying an additional pulse with carrier
frequency ω′

d ≈ ε01, duration τRabi, and maximal amplitude
dRabi, see inset of Fig. 4(a). We verify the presence of Rabi
oscillations numerically by simulating the time evolution for
the working point 1©. For a fixed initial state |w0(t)〉, the final
population of |w1(t)〉 shows oscillatory behavior as a function
of τRabi and ω′

d, see Fig. 4(a). Full Rabi cycles only occur
when ω′

d matches ε01. Computation of the gate fidelities for
the examples of X and

√
X gates yields a value of 99.99% in

both cases.
Single-qubit phase gates can be implemented by modulat-

ing the quasi-energy difference ε01 through a temporary in-
crease δA of the drive amplitude [see inset of Fig. 4(b)]. This
modifies the dynamical phase acquired over the gate duration
τphase, enabling S and T gates, for example. For numerical
verification, we initialize the qubit in one of the Floquet su-
perposition states |ψ±(t)〉 = [|w0(t)〉 ± |w1(t)〉e−iε01t]/

√
2

(equator of the Bloch sphere) and monitor the population in
the orthogonal state as a function of τphase and δA. The ob-
served oscillations [Fig. 4(b)] in this population indicates that
the computational states accumulate a relative phase as ex-
pected. The computed fidelity for S (π/2) and T (π/4) gates
realized both exceed 99.99%.

B. Readout

Floquet states can be adiabatically mapped [63, 73] to the
eigenstates of the driven qubit by slowly ramping down the
flux modulation, provided that gaps in the quasi-energy spec-
trum are sufficiently large. For 1©, Fig. 4(c) shows that quasi-
energy gaps do not close as A is decreased to 0, thus enabling
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1©

|〈ψ(t)|w1(t)〉|2 |〈ψ(t)|ψ+(t)〉|2

FIG. 4. Concurrent gates for the Floquet qubit and adiabatic map-
ping protocol for readout. (a) Adding a secondary pulse (inset) to the
Floquet drive induces Rabi oscillations, which are sufficient for im-
plementing X gate operations. The plot shows the final population
in Floquet eigenstate |w1(t)〉 as a function of pulse duration τRabi

and carrier frequency ω′d, for the initial state |w0(t)〉. Full Rabi os-
cillations are observed when the secondary drive frequency matches
the quasi-energy difference ε01 (dashed line) (b) Phase gates can be
realized by a temporary increase in the Floquet drive strength (inset).
The change in drive strength modulates the quasi-energy and thus
enables phase gates such as S (π/2) and T (π/4). The plot shows
the final population in |ψ+(t)〉, as a function of the pulse duration
τphase and the drive amplitude variation δA, with the qubit initial-
ized in |ψ−(t)〉 (see main text for definition for |ψ±(t)〉). (c) shows
the quasi-energy spectrum as a function of A (from 0 to A 1©), with
Floquet drive frequency fixed at ωd 1©. (A 1© and ωd 1© are the drive
parameters at working point 1©.) Red and blue star symbols mark
the two Floquet states at point 1©, whereas dots of the same color
represent the states |g〉 and |e〉 of the undriven fluxonium. An adia-
batic mapping from Floquet states to static qubit eigenstates can by
realized with a sufficiently slow switch-off of the drive from A 1© to
0, given the nonzero gap between the quasi-energies. (d) Simulation
of the adiabatic mapping achieved by continuously switching off the
drive (ramp-down in inset). The final population in |g〉 is plotted as
a function of the ramp time tramp, with the qubit initiated in |w0(t)〉
(blue) or |w1(t)〉 (green). The results confirm the feasibility of an
adiabatic mapping with high fidelity, thus enabling readout of the
Floquet states.

the adiabatic state transfer. We verify this mapping numer-
ically by simulating the closed-system evolution with either
of the driven Floquet qubit eigenstates |w0(1)(t)〉 as the ini-
tial state and a smooth ramp-down of duration tramp. Fig. 4(d)
shows the calculated population in the undriven qubit eigen-

states |g(e)〉 as a function of time. The resulting state-transfer
fidelity is high for ramp times of the order of tens of ns,
(99.6% for tramp = 30 ns). Conventional dispersive readout
techniques, applicable to fluxonium qubits [7, 8, 12–14], can
then be employed subsequently in order to infer the original
dynamical state.

In future work, it may be interesting to explore alternative
readout protocols similar to the one presented in [8]. In an
extension of that scheme, a higher fluxonium level that pro-
duces a large dispersive shift on the readout resonator would
be excited conditionally, based on the occupied computational
Floquet state.

VI. FLOQUET TWO-QUBIT GATES

The fact that dynamical sweet spots form entire manifolds
in the control-parameter space provides sufficient flexibility to
perform two-qubit gates among Floquet qubits without ever
giving up the dynamical protection. Thanks to the one-to-
one relation between quasi-energies and Floquet states on one
hand, and ordinary eigenenergies and eigenstates on the other
hand, it is possible to transfer existing protocols for two-qubit
gates to the case of Floquet qubits. In the following, we
present a protocol for implementing a

√
iSWAP gate between

two Floquet qubits, again based on flux-modulated fluxonium
qubits. Related protocols for implementing two-qubit gates
with dynamical protection have been discussed for slightly
different systems involving either near-adiabatic parametric
modulation of the qubit frequency [19–21, 23] or requiring
a tunable coupler between qubits [74, 75]. The two-qubit gate
proposed here is designed for the protected Floquet regime
discussed above. It is compatible with direct driving of the
qubit and circumvents the need for tunable coupling, thus pro-
viding a relatively simple scheme for future experimental re-
alization.

A. Analytical description

A simple method of implementing
√
iSWAP gates, for ex-

ample among two transmon qubits, consists of bringing the
pair of weakly coupled qubits into resonance for a certain
gate duration. For two Floquet qubits, we show that

√
iSWAP

gates can realized in a similar manner by tuning the quasi-
energy differences into and out of resonance. An important
advantage of the Floquet two-qubit gate is the ability to keep
both qubits within the dynamical sweet manifolds for the com-
plete duration of the gate, thus reducing the error due to the
qubits’ coupling to 1/f noise.

We establish this Floquet-gate protocol for a composite sys-
tem of two coupled fluxonium qubits, each of which is flux-
modulated, described by

ĤLR(t) = ĤL(t) + ĤR(t) + Ĥint. (11)

Here, ĤL(t) and ĤR(t) denote the Hamiltonians of the two
periodically driven fluxonium qubits, and Ĥint is the time-
independent coupling between them. The flux-modulation
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frequencies associated with the two qubits are given by ωL
d

and ωR
d , respectively. As appropriate for a fluxonium with

large anharmonicity, we may simplify the description by trun-
cating the Hilbert space to a two-level subspace. We propose
to induce the necessary qubit-qubit interaction Hint via a mu-
tual inductance between the two fluxonium loops. In this case,
the coupling term takes the form Ĥint = Jσ̂L

z σ̂
R
z , with J de-

noting the coupling strength. For later convenience, we intro-
duce the abbreviation Ĥ0(t) = ĤL(t) + ĤR(t) for the bare
qubit Hamiltonian.

When the two Floquet qubits are in resonance, i.e.,
their quasi-energies are degenerate, then the static
coupling induces excitation swapping between the
Floquet states (rather than between bare qubit eigen-
states). To describe this process, we move to the
interaction picture using the time-dependent unitary
Û0(t) = T exp[−i

∫ t

0
Ĥ0(t

′)dt′] = ÛL
q (t) ⊗ ÛR

q (t). Here,

Û
L(R)
q (t) =

∑
j=0,1 |w

L(R)
j (t)〉〈wL(R)

j (0)| exp[−iεL(R)
j t],

and |wL(R)
j (t)〉 and ε

L(R)
j denote the j-th Floquet state and

corresponding quasi-energy of the left (right) qubit. In this
interaction picture, the Hamiltonian is given by

H̃LR(t) =J Û
†
0 (t)σ̂

L
z σ̂

R
z Û0(t)

=J
∑

k,k′∈Z

∑

µ,µ′=±,φ

gLkµg
R
k′µ′ ĉ

L
µĉ

R
µ′

× exp
[
−i(ω̄L

kµ+ω̄
R
k′µ′)t

]
, (12)

where ω̄
L(R)
kµ and g

L(R)
kµ are the filter frequencies and the

Fourier coefficients of the σ̂L(R)
z ’s matrix elements in the Flo-

quet basis, associated with the left (right) qubit, respectively.
The operators ĉL(R)

µ denote the Pauli matrices defined in the
Floquet basis (see Appendix B for details).

Following the conventional strategy, we perform a√
iSWAP gate by bringing the Floquet qubits into resonance

(εL01 = εR01) through an suitable change of the drive parame-
ters. After rotating-wave approximation, the effective Hamil-
tonian at the degeneracy point reduces to

H̃ ′ = J gL0+g
R
0−ĉ

L
+ĉ

R
− + h.c., (13)

which is the flip-flop interaction necessary for the
√
iSWAP

gate. We note that the term proportional to gL0φg
R
0φĉ

L
φĉ

R
φ corre-

sponds to an unwantedZZ interaction between Floquet qubits.
This term exactly vanishes as soon as at least one of the qubits
is at a dynamical sweet spot where gL,R0φ = 0 [Eq. (9)].

Based on the full interaction Hamiltonian (12), we next ver-
ify numerically that this simple strategy indeed yields high-
fidelity two-qubit gates.

B. Numerical simulation

To construct our
√
iSWAP gate, we first identify appropri-

ate drive parameters for sweet-spot operation and for bring-
ing the qubits into and out of resonance. Fig. 5(a) and (b)
show the relevant sweet-spot manifolds for the two fluxonium

On Resonance

FIG. 5. Simulation of a Floquet-
√
iSWAP gate for two inductively

coupled fluxonium qubits. (a) and (b) show the dynamical sweet
manifolds corresponding to the two driven fluxonium qubits, at given
dc flux biases. The red and blue dots in (a) indicate the gate and
idle points for the left fluxonium, which is tuned along the path
marked by the black-dashed curve. The red square in (b) repre-
sents the operating point for the right fluxonium qubit. (c) shows
the drive pulses realizing this gate operation with τwait and tramp

denoting gate duration and ramp time, respectively. (d) depicts the
calculated gate fidelity as a function of ramp time and gate dura-
tion, where the red star marks the position of maximal gate fidelity.
(Parameters are as follows: left fluxonium – EL

C/h = 1.2 GHz,
EL

J /h = 6.0 GHz; right fluxonium – EL
L/h = 0.95 GHz, while

ER
C/h = 1.0 GHz, ER

J /h = 4.1 GHz, and ER
L /h = 0.7 GHz. The

interaction strength is set by J/h = 4.8 MHz. The dc fluxes are fixed
to φL(R)

dc /2π = 0.529(0.520), and noise parameters are the same as
in Table I.)

qubits. Within these manifolds, the quasi-energy difference
εL,R01 varies continuously, making it possible to establish de-
generacy of the two Floquet qubit quasi-energies, εL01 = εR01.
In the example we selected, the right qubit is maintained at a
fixed dynamical sweet spot [Fig. 5(b), red square] while the
left qubit can be tuned within its sweet-spot manifold from an
idle point (blue dot) into resonance at the gate point (red dot)
and back [Fig. 5(a)].

The detailed pulse shapes of the drives enacting the gate
are shown in Fig. 5(c). For the left fluxonium qubit, ampli-
tude and frequency of the flux modulation are adjusted in a
way to smoothly tune the qubit from its idle point to the gate
point (within the ramp time tramp). Pulse shaping allows one
to choose a path (black-dashed curve) that keeps the Floquet
qubit within the sweet manifold [Fig. 5(a)]. After leaving the
qubit at the gate point for a suitable waiting time τwait, the
drive parameters are tuned back to the idle point. We calcu-
late the

√
iSWAP-gate fidelity by an open-system simulation
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of this composite system (again taking into account of 1/f
flux noise and dielectric loss). The results in Fig. 5(d) show a
broad region of gate parameters τwait and tramp with high gate
fidelities up to 99.96%. (The discussion of the effect of stray
two-qubit interactions at the idle point is beyond the scope of
this paper, but see Refs. [75–79] for mitigation strategies.)

VII. CONCLUSIONS

Operation of superconducting qubits at static sweet spots
is a well-established means to reducing 1/f noise sensitiv-
ity. However, one limitation is the abrupt symmetry-induced
change in the nature of wavefunctions at the sweet spot,
which can negatively impact depolarization times at the sweet
spot. We have presented a protocol for engineering dynam-
ical sweet spots which partially overcome this limitation. In
contrast to static sweet-spot operation, the Floquet scheme can
yield long dynamical Tφ and T1 simultaneously. The possibil-
ity to directly perform both single- and two-qubit gate opera-
tions as well as readout on Floquet qubits makes them promis-
ing for both quantum information storage and processing. A
companion experimental work has implemented this proposed
protocol using a flux-modulated fluxonium qubit [51], and
a 40-fold improvement in dephasing time due to dynamical
sweet-spot operation is reported.

Although the example we have demonstrated only makes
use of the simplest single-tone drives, it is possible that non-
sinusoidal or multichromatic drives could further expand the
sweet-spot manifolds and yield even higher qubit coherence
times. Future work may explore building networks of larger
numbers of Floquet qubits, which could be particularly bene-
ficial for quantum information processing thanks to enhanced
dynamical coherence times and tunability.
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Appendix A: Effective model for fluxonium, and coupling to
noise sources

The Hamiltonian describing a flux-modulated fluxonium is
given by [80]

Hq,full(t) = 4ECn̂
2 +

1

2
EL[ϕ̂+ φext(t)]

2 − EJ cos ϕ̂,

(A1)

where EC, EL and EJ represent the capacitive, inductive and
Josephson energies of the fluxonium qubit, and φext(t) =
φdc + φac cos(ωdt). We use ϕ̂ and n̂ to denote the flux and
conjugate charge operator of the qubit, respectively.

The static eigenenergies Ωl and corresponding eigenstates
|l〉 (l = g, e, f, · · · ) are obtained by diagonalizing Hq,full, and

depend on the dc flux component φdc. We will refer to the
specific solutions at the static sweet spot φdc = π by Ω̃l and∣∣l̃
〉
. These eigenstates, expressed in the phase basis, have al-

ternating parities (for example, |g̃〉 and |ẽ〉 have even and odd
parities respectively).

To avoid leakage into higher fluxonium states under flux
modulation, we choose fluxonium parameters resulting in a
large anharmonicity at half-integer flux, Ω̃f − Ω̃e � Ω̃e− Ω̃g .
If we limit the external flux φext(t) to values in the vicinity
of φdc = π, and avoid resonance with the e − f transition,
ωd � Ω̃f − Ω̃e, then Eq. (A1) can be approximated by the
effective two-level Hamiltonian (1). In that Hamiltonian, ∆ =

Ω̃e − Ω̃g , A = ELφacϕ̃ge, B = 2EL(φdc − π)ϕ̃ge; here,
ϕ̃ge = |〈g̃|ϕ̂|ẽ〉|. Different from the usual convention, we
define the Pauli matrices as

σx = |ẽ〉〈ẽ| − |g̃〉〈g̃|, σz = |g̃〉〈ẽ|+ |ẽ〉〈g̃|, (A2)

which is a common choice in the context of flux qubits [62,
63].

Given this effective model, it is important to revisit the
question of how the fluxonium qubit couples to the limiting
environment degrees of freedom. In Section II, it is posited
that the noise sources of interest couple to the qubit through
its σz operator which can be motivated as follows. The flux-
onium’s interaction with the 1/f flux noise source can be
modeled as mutual inductance between the fluxonium’s in-
ductor and the bath, hence the coupling to the noise is via the
qubit operator ϕ̂. Experimental results are further consistent
with dielectric noise coupling to the qubit’s phase operator
[7, 8, 13, 14, 16]. Note that operator ϕ̂ only couples states
with different parities. Therefore, based on Eq. (A2), it is pro-
jected to σz in the two-level subspace, which results in the
Hint used in our model.

Appendix B: Floquet master equation

This appendix sketches the derivation of the Floquet mas-
ter equation [60, 61, 64] which we use in the subsequent ap-
pendix to calculate the dynamical decoherence rates. The full
Hamiltonian is given by H(t) = Hq(t) + HB + Hint with
time-periodic qubit Hamiltonian, and time-independent bath
and interaction Hamiltonian. The latter is taken to be of the
form Hint = σ̂η̂, where σ̂ and η̂ are qubit and bath operators,
respectively.

We start from the Redfield equation of the driven qubit

dρ̃q(t)

dt
=−

∫ t

0

dτTrB
[
H̃int(t),

[
H̃int(t− τ), ρ̃q(t)⊗ρ̃B

]]
,

(B1)

which describes the evolution of the qubit density ma-
trix ρ̃q (in the interaction picture). Here, TrB denotes a
partial trace on the bath degrees of freedom, and ρ̃B is
the density matrix of the bath in the interaction picture,
which is assumed to stay in thermal equilibrium. The term
H̃int(t) = U†

0 (t)HintU0(t) is the qubit-bath coupling ex-
pressed in the interaction picture, where U0(t) = Uq(t)UB(t),
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Uq(t) =
∑

j=0,1 |wj(t)〉〈wj(0)| exp(−iεjt), and UB(t) =

exp(−iHBt). The interaction term can be further expressed
as H̃int(t) = σ̃(t)η̃(t), where σ̃(t) = U†

q(t)σ̂Uq(t) and
η̃(t) = U†

B(t)η̂UB(t).
Eq. (B1) is an integro-differential equation, and not con-

venient for reading off decoherence rates. To derive expres-
sions for γµ (µ = ±, φ), we first simplify this equation by
employing the rotating-wave approximation. In order to iden-
tify the fast-rotating terms, we decompose σ̃(t) into different
frequency components,

σ̃(t) =
∑

k∈Z,µ=±,φ

gkµĉµ(0) exp(−iω̄kµt). (B2)

Here, we define the Floquet counterparts of the Pauli matrices
by

ĉ+(t) = |w1(t)〉〈w0(t)|,
ĉ−(t) = |w0(t)〉〈w1(t)|,
ĉφ(t) = |w1(t)〉〈w1(t)| − |w0(t)〉〈w0(t)|. (B3)

The frequencies ω̄k,µ appearing in Eq. (B2) are the filter fre-
quencies defined in the Section III, namely ω̄k± = ∓ε01+kωd

and ω̄kφ = kωd. Furthermore, the Fourier-transformed cou-
pling matrix elements are given by

gk,± =
ωd

2π

∫ 2π/ωd

0

dt eikωdt Trq [σ̂ĉ∓(t)] ,

gk,φ =
ωd

4π

∫ 2π/ωd

0

dt eikωdt Trq [σ̂ĉφ(t)] , (B4)

where Trq is the partial trace over the qubit degrees of free-
dom.

The qubit interaction operator σ̃(t), expanded in this way,
is substituted into Eq. (B1) resulting in a sum terms each in-
volving the coefficient exp[−i(ω̄k′µ′ − ω̄kµ)t]. Under certain
conditions, every term with ω̄k′µ′ − ω̄kµ 6= 0 can be treated
as fast-rotating and be neglected. This strategy is appropri-
ate if both the minimal quasi-energy difference and the drive
frequency ωd are much larger than the inverse of the relevant
time scale, i.e., the coherence time. With this Eq. (B1) is cast
into the simplified form

dρ̃q(t)

dt
=

∑

µ=±,φ

ζµ

[∫ ∞

−∞
dωFµ(ω, t)S(ω)

]
D[ĉµ]ρ̃q(t),

(B5)

where

Fµ(ω, t) = ζ−1
µ

∑

k

π−1t sinc[(ω − ω̄kµ)t]|gkµ|2 (B6)

denotes the filter functions from Section III, D[L]ρ̃q =
Lρ̃qL

† − (L†Lρ̃q + ρ̃qL
†L)/2 is the usual damping super-

operator, and S(ω) =
∫∞
−∞ dt eiωt TrB[η̃(t)η̃(0)ρ̃B] is the

noise spectrum. We have further introduced the abbreviations
ζ± ≡ 1 and ζφ ≡ 1/2, and used ĉµ(0) → ĉµ. [We note
that terms contributing to the Lamb shift have been omitted in
Eq. (B5).]

The simplified Redfield equation (B5) is reminiscent of the
Lindblad form, and includes three distinct terms µ = ± and
µ = φ that describe relaxation, excitation and pure dephasing
of the Floquet qubit. However, in place of fixed rates asso-
ciated with the individual jump terms, Eq. (B5) still involves
time-dependent rate coefficients given by

Kµ(t) =

∫ ∞

−∞
dωFµ(ω, t)S(ω). (B7)

We discuss in the subsequent appendix how to evaluate these
rate coefficients for concrete choices of the noise spectrum
S(ω).

Appendix C: Evaluation of decoherence rates

This appendix discusses the evaluation of the decoher-
ence rate coefficients associated with the simplified Redfield
equation (B5), focusing on the specific noise spectrum S(ω)
adopted in the main text. To simplify the integral Kµ(t), we
first inspect the structure of the filter functions Fµ(ω, t) de-
fined in Eq. (B6). These functions are peaked at the filter fre-
quencies ω̄k,µ, with the peak width given by 2πt−1. We dis-
tinguish two separate scenarios: (1) the case of noise spectra
that can be approximated as constant within each peak width,
and (2) the case of noise spectra, such as 1/f spectra, where
this approximation does not hold for all peaks.

Case (1).—If the spectrum S(ω) is sufficiently flat within
each peak-width frequency range, we can approximate
(t/π) sinc(ωt) ≈ δ(ω) in Eq. (B6), and arrive at the Marko-
vian Floquet master equation

dρ̃q(t)

dt
=

∑

k∈Z,µ=±,φ

|gkµ|2S(ω̄kµ)D[ĉµ]ρ̃q(t). (C1)

This form allows one to directly read off the resulting rates
which are given by γ± =

∑
k |gkµ|2S(ω̄k±) and γφ =∑

k 2|gkφ|2S(ω̄kφ).
Case (2).—On the other hand, the noise spectrum S(ω) at

depolarization filter frequencies ω̄k± is considered flat, there-
fore the resulting expressions of γ± is the same as shown in
Case (1). Finally, we arrive at the results shown in Eqs. (7)
and (8) in the main text.

Whenever the noise spectrum varies significantly across
one filter-function peak width, the above approximation fails.
This is, in particular, the case for 1/f noise near ω = 0
where S(ω) is purely dominated by the contribution Sf(ω) =
A2

f |ω/2π|−1. For filter frequencies away from ω = 0, we
continue treating S(ω) as sufficiently flat. Zero and nonzero
filter frequencies hence play distinct roles. For depolarization,
relevant filter frequencies ω̄k± are non-zero and the discussion
of Case (1) carries over, yielding Eq. (7) for the depolarization
rates.

The appearance of a zero filter frequency for dephasing mo-
tivates us to separate the integral Kφ(t) [Eq. (B7)] into a low-
frequency and a high-frequency part. We focus on the low-
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frequency part first, which is given by

I(t) = 2|g0φ|2
∫ π/t

−π/t

dω
t

π
sinc(ωt)Sf(ω), (C2)

where the integration range is set by the peak width 2π/t. To
regularize the logarithmic divergence of this integral, we em-
ploy infrared cutoffs ±ωir [5, 17, 20, 56]. The cutoff is of the
order of 1Hz [17], much smaller than the inverse of the mea-
surement time. In this case, the integral can be approximated
by

I(t) ≈ 8A2
f t| lnωirt||g0φ|2. (C3)

For the integral over the remaining high-frequency range,
the δ-function approximation we made in Case (1) is again
valid. After combining the low and high-frequency contribu-
tions, the approximated Kφ(t) is a time-dependent function,
given by

Kφ(t) ≈ I(t) + 2
∑

k 6=0

|gkφ|2S(ω̄kφ). (C4)

According to this, Kφ(t) is reminiscent of a time-dependent
rate for pure dephasing that grows linearly in time (up to loga-
rithmic corrections). Consequently, the off-diagonal elements
of the density matrix do not follow an exponential decay. In-
stead, the decay is given by

ρ̃q,01 ∼ exp
[
− 4A2

f |g0φ|2t2| lnωirt|

−
∑

k 6=0

2|gkφ|2S(ω̄kφ)t

]
, (C5)

which is a product of a Gaussian (again, up to logrithmic
corrections) and pure exponential. (Note that to estimate the
pure-dephasing rate, the contribution of depolarization to the
decay of ρ̃q,01 is excluded in the expression above.) Based on
the 1/e decay time, we obtain

γφ ' Af |2g0φ|
√
| lnωirtm|+

∑

k 6=0

2|gkφ|2S(ω̄kφ), (C6)

as a simple approximation bounding the pure-dephasing rate
from above. Here, tm is the characteristic measurement time;
a representative value of the factor

√
| lnωirtm| found in a

recent experiment [17] is close to 4.
As discussed in Section IV.B, there exists an interrela-

tion constraining the depolarization and pure-dephasing rates.
This constraint originates from the conservation rule (10) for
the filter weights which we prove in the following. Without
loss of generality, we take the qubit coupling operator σ̂ in
Hint = σ̂η̂ to be traceless with eigenvalues ±1. (Any trace
contribution renormalizes the bath Hamiltonian, and the scale
factor rendering the eigenvalues ±1 can be absorbed into η̂.)
Employing the decomposition of the identity in terms of the
Floquet states, 11 =

∑
j=0,1 |wj(t)〉〈wj(t)|, and making use

of Eqs. (B3) and (B4), we find

Trq(σ̂
2) = Trq(σ̂11σ̂11) =

∑

j,j′=0,1

|〈wj(t)|σ̂|wj′(t)〉|2

=
1

2

∣∣Trq[σ̂ĉz(t)]
∣∣2 +

∑

µ=±

∣∣Trq[σ̂ĉ±(t)]
∣∣2

=
∑

µ=±,φ

ζ−1
µ

∣∣∣∣∣
∑

k∈Z
gkµ e

−ikωdt

∣∣∣∣∣

2

= 2. (C7)

Time averaging this expression over one drive period 2π/ωd

finally yields the claimed conservation rule

W+ +W− +Wφ =
∑

k∈Z

(
|gk+|2 + |gk−|2 + 2|gkφ|2

)
= 2.

(C8)

We further note that Eq. (C8) also imposes a constraint on the
filter functions, namely

∑

µ=±,φ

∫ ∞

−∞
dωFµ(ω, t) = 2. (C9)

Appendix D: Analytical approach for solving Floquet equations

In this appendix, we first introduce a framework useful for
solving the Floquet equation, and later employ this framework
to derive several results discussed in Sections III and IV.

Solutions |wj(t)〉 of the Floquet equation (4) are required
to be time-periodic in 2π/ωd. Each such wavefunction can
be considered an element in the vector space F of 2π/ωd-
periodic functions of the type f : R → C2. We choose the
basis vectors of F to be |fσ,k(t)〉 = |σ〉 exp(−ikωdt), where
|σ = z±〉 are the eigenvectors of the operator σ̂z and k ∈ Z.
In this basis, the Floquet state |wj(t)〉 has the decomposition

|wj(t)〉 =
∑

k∈Z

∑

σ=z±

ujσk|σ〉e−ikωdt, (D1)

which is the Fourier expansion of |wj(t)〉 with ujσk as Fourier
coefficients. It is useful to define an inner product for ele-
ments of F via the time average of their product over one
drive period. Based on this definition, the basis {|fσ,k(t)〉} is
orthonormal, since

ωd

2π

∫ 2π/ωd

0

dt 〈fσ,k(t)|fσ′,k′(t)〉 = δσσ′δkk′ . (D2)

The decomposition (D1) maps the periodic function |wj(t)〉 ∈
F to a vector ~uj ∈ V = C2 ⊗ C∞. Here, the basis vec-
tors |fσ,k(t)〉 of F are mapped to the canonical unit vectors
(~u)σ′,k′ = δσσ′δkk′ which we also denote by |σ, k〉. Fol-
lowing this basis change, the Floquet state Eq. (D1) is now
represented as a vector in V ,

|w̄j〉 =
∑

σ=z±

∑

k∈Z
ujσk|σ, k〉. (D3)
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Applying the basis change to the Floquet equation, one
finds that it converts to an ordinary eigenvalue problem. To
carry out this step, we consider the two operators Hq(t) and
−i∂/∂t acting on |wj(t)〉 on the left-hand side of Eq. (4).
Both of them map basis functions |fσ,k(t)〉 to other time-
periodic functions in F , and hence correspond to matrices act-
ing on elements in V . Specifically, we have

Hq(t)|fσ,k(t)〉 =
∑

σ,σ′=z±

∑

k′∈Z
hσ′σk′ |fσ′,k+k′(t)〉,

−i ∂
∂t

|fσ,k(t)〉 =− kωd|fσ,k(t)〉, (D4)

where

hσ′σk′ =
ωd

2π

∫ 2π/ωd

0

dt eik
′ωdt〈σ′|Hq(t)|σ〉.

Using Eq. (D4), we can easily express the matrices represent-
ing Hq(t) and −i∂/∂t as

H̄q =
∑

σ,σ′=z±

∑

k,k′∈Z
hσ′σ′k′ |σ′, k + k′〉〈σ, k|, (D5)

Λ̄ =−
∑

σ=z±

∑

k∈Z
kωd|σ, k〉〈σ, k|.

With this the Floquet equation takes on the form

H̄|w̄j〉 = εj |w̄j〉, (D6)

where H̄ = H̄q + Λ̄.
Solving this eigenvalue equation yields an infinite num-

ber of eigenvectors and corresponding eigenvalues (quasi-
energies). The structure of this equation is such that any given
eigenpair |w̄j〉, εj generates an infinite set of solutions defined
via

|w̄j,n〉 =
∑

σ=z±

∑

k∈Z
ujσ,k|σ, k − n〉,

εj,n = εj + nωd (n ∈ Z). (D7)

Reverting back to the function space F , the above states have
the form |wj,n(t)〉 = |wj(t)〉 exp(−inωdt). Accordingly, at
the level of the underlying Hilbert space of quantum states,
only two of these states (j = 0, 1) are linearly independent.

In the following, we employ this Floquet framework to
the specific Hamiltonian (1). For this analysis, it is useful
to provide explicit expressions for the transformed H̄q from
Hq(t). Hq(t) involves three distinct operations: σ̂x, σ̂z , and
σ̂z cosωdt which are all valid linear operators on the function
space F . Applying again the basis transformation that led
from Eq. (D4) to Eq. (D5), these operators are transformed to
the following matrices in the |σ, k〉 basis:

σ̄x =
∑

k∈Z
|z+, k〉〈z−, k|+ |z−, k〉〈z+, k|,

σ̄z =
∑

k∈Z
|z+, k〉〈z+, k| − |z−, k〉〈z−, k|, (D8)

σ̄z,d=
1

2

∑

k′=±1

∑

k∈Z
|z+, k + k′〉〈z+, k| − |z−, k + k′〉〈z−, k|.

The resulting H̄q can then be compactly written as

H̄q =
∆

2
σ̄x +

(
Aσ̄z,d +

B

2
σ̄z

)
. (D9)

1. Relating ∂ε01/∂B to gkµ

Here, we establish the relation between the derivative
∂ε01/∂B ∼ ∂ε01/∂φdc and the coefficients gkµ. We consider
a small perturbation affecting the Floquet Hamiltonian (D9)
of the type H̄q → H̄q + δB σ̄z/2. The first-order correction
to the quasi-energy difference ε01 is given by

δε
(1)
01 =

δB

2
(〈w̄1|σ̄z|w̄1〉 − 〈w̄0|σ̄z|w̄0〉) . (D10)

Making use of the definition of σ̄z in Eq. (D8) and the inner
product, we find

〈w̄j |σ̄z|w̄j′〉 =
ωd

2π

∫ 2π/ωd

0

dt 〈wj(t)|σ̂z|wj′(t)〉, (D11)

and thus arrive at the identity

δε
(1)
01 =

δB

2
× ωd

2π

∫ 2π/ωd

0

dt Trq[σ̂z ĉz(t)] = δB g0φ,

(D12)

where the last step uses the definition of g0φ from Eq. (B4).
We thus conclude that ∂ε01/∂B = g0φ.

2. Avoided crossings in the strong-drive limit

In this and the following subsections, we employ perturba-
tion theory to estimate the gap sizes of avoided crossings, in
the strong-drive (A & Ωge) and weak-drive (A � Ωge) limit.
In the strong-drive limit, we treat the first term V̄ = ∆σ̄x/2
in (D9) perturbatively while H̄0 = H̄ − V̄ acts as the unper-
turbed Hamiltonian. The exact eigenstates and eigenvalues of
H̄0 are [62, 63]

∣∣w̄(0)
±,n

〉
=

∑

k∈Z
Jk

(
∓ A

ωd

)
|z±, k − n〉, (D13)

ε±,n = ±B/2 + nωd.

Here, we have chosen to adjuster notation according to j =
0, 1 → ± which helps keep expressions in the following more
compact, but should not be confused with the notation z±.

Whenever the drive frequency matches ωd = B/m (m ∈
N), one finds that the unperturbed quasi-energies ε+,n become
ε−,n+m degenerate. This degeneracy is lifted when including
corrections of first order in ∆. Perturbation theory yields

∆(1)
m =2

∣∣〈w̄(0)
+,0

∣∣V̄
∣∣w̄(0)

−,m〉
∣∣ = ∆

∣∣〈w̄(0)
+,0

∣∣σ̄x
∣∣w̄(0)

−,m〉
∣∣.

To proceed, we convert the Floquet states back into the time
domain via

∣∣w(0)
±,n(t)

〉
= exp

(
∓i A
ωd

sinωdt+ inωdt

)
|z±〉. (D14)
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(Note that Eqs. (D13) and (D14) are related through the
Jacobi-Anger expansion.) This enables the evaluation of the
leading-order gap size:

∆(1)
m =∆

∣∣∣∣∣
ωd

2π

∫ 2π/ωd

0

dt
〈
w

(0)
+,0(t)

∣∣σ̂x
∣∣w(0)

−,m(t)
〉
∣∣∣∣∣

=∆

∣∣∣∣Jm
(
2A

ωd

)∣∣∣∣ . (D15)

3. Avoided crossings in the weak-drive limit

In the weak-drive limit (A � Ωge), we instead treat the
drive-related term V̄ = A σ̄z,d perturbatively. The unper-
turbed eigenvalues and eigenstates of H̄0 = H̄ − V̄ are given
by

∣∣w̄(0)
±,n

〉
= cos

θ

2
|z±,−n〉 ± sin

θ

2
|z∓,−n〉, (D16)

ε±,n = ±Ωge/2 + nωd. (D17)

These are closely related to the eigenstates and eigenvalues
of the undriven qubit. Here, we employ the definitions θ =
tan−1(∆/B), and Ωge =

√
∆2 +B2.

Whenever the drive frequency obeys ωd = Ωge/m (m ∈
N), the quasi-energies ε+,n = ε−,n+m become degenerate.
Again, this degeneracy is lifted by the perturbation V̄ . For
m = 1, the calculation resembles the one for the strong-drive
limit and results in a leading-order gap size of

∆
(1)
m=1 =2

∣∣〈w̄(0)
+,0

∣∣V̄
∣∣w̄(0)

−,1〉
∣∣ = A| sin θ|. (D18)

The calculation of the gap sizes for m > 1 requires higher-
order degenerate perturbation theory, which we perform using
Brillouin-Wigner expansion. This approach converts Eq. (D6)
into a reduced equation that only involves the degenerate
eigenvector pair |w̄(0)

+,0〉 and |w̄(0)
−,m〉.

To facilitate the derivation of the reduced equation, we de-
fine the projection operators

P̄ =
∣∣w̄(0)

+,0

〉〈
w̄

(0)
+,0

∣∣+
∣∣w̄(0)

−,m

〉〈
w̄

(0)
−,m

∣∣

and Q̄ = 1̄1 − P̄ , which project vectors in V onto the degener-
ate subspace, and onto the subspace orthogonal to it, respec-
tively. Here, 1̄1 is the identity operator on V . According to
Brillouin-Wigner theory, the two exact eigenvectors |w̄j〉 with
quasi-energy εj obey the equation

H̄deg|w̄j〉 = εj |w̄j〉, (D19)

where

H̄deg = P̄ (V̄ + V̄ T̄ V̄ + V̄ T̄ V̄ T̄ V̄ + · · · )P̄ , (D20)

and

T̄ =
Q̄

εj − H̄0
. (D21)

Note that despite its appearance, Eq. (D19) is not an ordinary
eigenvalue problem, since both sides contain the eigenvalue
εj . It is possible to find a solution for the eigenvalues itera-
tively. To avoid excessive notation, we focus on the j = 0
eigenvalue and omit unnecessary subscripts in the following.
In the first iteration, we insert the unperturbed quasi-energy
ε(0) = ε+,0 into the left-hand side of Eq. (D19), and solve
for ε(1) on the right-hand side. Using the new quasi-energy
approximation, we then repeat these steps to include higher-
order corrections. With this procedure, we find that, to leading
order in A, the gap size is given by

∆m ≈ | sin θ cosm−1 θ| Am

(m− 1)!ωm−1
d

. (D22)

4. Gap size and the width of Tφ peaks surrounding sweet-spot
manifolds

In this subsection, we establish the relation between the
gap size ∆m and the width of the Tφ peaks along the drive-
frequency axis surrounding sweet-spot manifolds. We derive
this relation only for the strong-drive limit; the derivation for
the weak-drive limit is analogous.

Generically, the pure-dephasing rate of a Floquet qubit is
likely to be dominated by the 1/f noise contributions away
from sweet spots. In our case, that noise correspond to flux
noise which limits the system, whenever the derivative of
the quasi-energy difference with respect to flux is nonzero,
∂ε01/∂B 6= 0. Under these conditions, Eq. (8) implies that
Tφ is inversely proportional to |∂ε01/∂B|. Therefore, to find
the drive-frequency width of the Tφ peaks, it is useful to first
explore how |∂ε01/∂B| depends on ωd.

For a dynamical sweet spot in the strong-drive limit, A0 �
Ωge, the drive parameters satisfy ωd,m = B0/m. At the sweet
spot, the quasi-energy derivative vanishes, ∂ε01/∂B = 0. Let
us consider values B and ωd in the vicinity of the sweet-spot
point given by B0 and ωd,m. Using Eq. (D13), we see that the
Hamiltonian in the relevant subspace is

H̄ = H̄0 + V̄ (D23)

= ε+,0|w̄(0)
+,0〉〈w̄

(0)
+,0|+ ε−,m|w̄(0)

−,m〉〈w̄(0)
−,m|+∆σ̄x/2,

which results in the quasi-energy difference

ε01 ≈
√
∆2

m + (B −mωd)2. (D24)

The derivative of ε01 with respect to B is thus

∂ε01
∂B

≈ B −mωd

ε01
. (D25)

Since we are interested in the width of the sweet manifold
along the ωd-axis, we set B = B0, and consider varia-
tions of ωd around ωd,m. As a function of ωd, the deriva-
tive |∂ε01/∂B| takes on its minimum value of zero at ωd =
ωd,m. Away from this sweet spot, |∂ε01/∂B| has an up-
per bound of 1, which is reached asymptotically in the limit
m|ωd − ωd,m| � ∆m. Based on this, we can use the full
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width at half minimum (FWHm) of |∂ε01/∂B| as an estimate
of the peak width of Tφ. The condition |∂ε01/∂B| = 1/2 for
reaching the half-minimum value, results in the equation

m|ωd − ωd,m|√
∆2

m +m2(ωd − ωd,m)2
=

1

2
. (D26)

The corresponding two solutions ω
(1,2)
d yield the FWHm

|ω(2)
d − ω

(1)
d |. Due the dependence of ∆m on ωd involving a

Bessel function [Eq. (D15)], the above equation (D26) is tran-
scendental. We can obtain analytical approximations as fol-

lows. We rewrite Eq. (D26) in the form
√
3m|ωd − ωd,m| =

∆m, and expanding the latter in ωd around ωd,m. The re-
sult of this is another transcendental equation, in which the
problematic Bessel function term can, however, be neglected
if ∂∆m/∂ωd �

√
3m holds. We have verified the validity of

this inequality for our parameters numerically, and this way
finally obtain the approximate FWHm

∆ωFWHm = 2∆m,0/
√
3m, (D27)

where ∆m,0 = ∆|Jm(2A0/ωd,m)|.
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[39] L. Cywiński, R. M. Lutchyn, C. P. Nave, and S. Das Sarma,
How to Enhance Dephasing Time in Superconducting Qubits,
Phys. Rev. B 77, 174509 (2008).

[40] L. Viola, E. Knill, and S. Lloyd, Dynamical Decoupling of
Open Quantum Systems, Phys. Rev. Lett. 82, 2417 (1999).

[41] G. S. Uhrig, Keeping a Quantum Bit Alive by Optimized π-
Pulse Sequences, Phys. Rev. Lett. 98, 100504 (2007).

[42] E. L. Hahn, Spin Echoes, Phys. Rev. 80, 580 (1950).
[43] H. Y. Carr and E. M. Purcell, Effects of Diffusion on Free Pre-

cession in Nuclear Magnetic Resonance Experiments, Phys.
Rev. 94, 630 (1954).

[44] S. Meiboom and D. Gill, Modified Spin-Echo Method for Mea-
suring Nuclear Relaxation Times, Rev. Sci. Instrum. 29, 688
(1958).

[45] L. Viola and E. Knill, Robust Dynamical Decoupling of Quan-

tum Systems with Bounded Controls, Phys. Rev. Lett. 90,
037901 (2003).

[46] Q. Guo, S.-B. Zheng, J. Wang, C. Song, P. Zhang, K. Li, W. Liu,
H. Deng, K. Huang, D. Zheng, X. Zhu, H. Wang, C.-Y. Lu, and
J.-W. Pan, Dephasing-Insensitive Quantum Information Stor-
age and Processing with Superconducting Qubits, Phys. Rev.
Lett. 121, 130501 (2018).

[47] F. Yan, S. Gustavsson, J. Bylander, X. Jin, F. Yoshihara, D. G.
Cory, Y. Nakamura, T. P. Orlando, and W. D. Oliver, Rotating-
Frame Relaxation as a Noise Spectrum Analyser of a Supercon-
ducting Qubit Undergoing Driven Evolution, Nat. Commun. 4,
2337 (2013).

[48] J. Jing, P. Huang, and X. Hu, Decoherence of an Electrically
Driven Spin Qubit, Phys. Rev. A 90, 022118 (2014).

[49] A. Y. Smirnov, Decoherence and Relaxation of a Quantum Bit
in the Presence of Rabi Oscillations, Phys. Rev. B 67, 155104
(2003).

[50] See Supplemental Material attached below for comparison be-
tween our theory and previously developed protection schemes
[19–23, 46–48].

[51] P. S. Mundada, A. Gyenis, Z. Huang, J. Koch, and A. A.
Houck, Floquet-Engineered Enhancement of Coherence Times
in a Driven Fluxonium Qubit, Phys. Rev. Applied 14, 054033
(2020).

[52] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets,
Science 326, 113 (2009).

[53] I. M. Pop, K. Geerlings, G. Catelani, R. J. Schoelkopf, L. I.
Glazman, and M. H. Devoret, Coherent Suppression of Electro-
magnetic Dissipation due to Superconducting Quasiparticles,
Nature 508, 369 (2014).

[54] L. Grünhaupt, M. Spiecker, D. Gusenkova, N. Maleeva, S. T.
Skacel, I. Takmakov, F. Valenti, P. Winkel, H. Rotzinger,
W. Wernsdorfer, A. V. Ustinov, and I. M. Pop, Granular Alu-
minium as a Superconducting Material for High-Impedance
Quantum Circuits, Nature Materials 18, 816 (2019).

[55] At low frequencies ω � kBT , the asymmetry in the spectrum
is negligible and a symmetric 1/f noise spectrum may be used.

[56] P. Groszkowski, A. Di Paolo, A. L. Grimsmo, A. Blais, D. I.
Schuster, A. A. Houck, and J. Koch, Coherence Properties of
the 0-π Qubit, New J. Phys. 20, 043053 (2018).

[57] W. Smith, A. Kou, X. Xiao, U. Vool, and M. Devoret, Super-
conducting Circuit Protected by Two-Cooper-Pair Tunneling,
npj Quantum Inf. 6, 8 (2020).

[58] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M.
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The discussion in the main text focuses on the connection between dynamical sweet spots and extrema of quasi-energy
differences for the example of a driven fluxonium qubit. In this note, we first extend this connection to a general periodically
driven qubit system, using a procedure similar to the one discussed in Appendix B. Subsequently, we employ the Floquet
framework to rephrase several previously developed protection schemes [1–10] as special limits of our theory.

I. GENERAL DISCUSSION: DYNAMICAL SWEET SPOTS

We consider a periodically driven qubit described by an abstract Hamiltonian Ĥ(λ, t). Here, λ is a control parameter, and the
Hamiltonian is time-periodic with period Td = 2π/ωd, i.e., Ĥ(λ, t+ Td) = Ĥ(λ, t). (As in the main text, ωd denotes the drive
frequency.) Due to environmental noise, λ is subjected to low-frequency fluctuations, λ(t) = λ0 + δλ(t). Here, δλ(t) captures
the random fluctuations in λ. (Note that in this simple model there is only a single noise channel.)

If the amplitude of the classical noise is sufficiently weak, then the original Hamiltonian may be expanded up to leading order
in δλ(t) which yields the unperturbed qubit Hamiltonian and the time-dependent perturbation

Ĥq(t) = Ĥ(λ0, t), Ĥint(t) =
∂Ĥ(λ, t)

∂λ

∣∣∣
λ=λ0

δλ(t), (1)

respectively. For convenience, we define σ̂(t) ≡ [∂Ĥ(λ, t)/∂λ]|λ=λ0 . The time-periodicity of the Hamiltonian renders σ̂(t)
time-periodic as well. While the example discussed in the main text leads to a constant σ̂(t), time dependence is present in other
cases such as discussed in Refs. [2, 3]. With Ĥq and Ĥint specified, we are ready to employ the Floquet framework developed
in Appendix B, and calculate the pure-dephasing rate. The result is given by

γφ =
∑

k∈Z
2|gλkφ|2Sλ(kωd), (2)

where

gλkφ =
1

2Td

∫ Td

0

dt eiωdt Trq [σ̂(t)ĉφ(t)] , (3)

and Sλ(ω) =
∫∞
−∞ dt eiωt〈δλ(t)δλ(0)〉 is the noise spectrum. As a regularized variant of 1/f noise it is appropriate to consider

an Sλ(ω) that is strongly peaked at ω = 0. For such a spectrum the pure-dephasing rate (2) of the qubit is generically dominated
by the term 2|gλ0,φ|2Sλ(0). However, the pure dephasing rate can be decreased significantly by choosing a working point where
gλ0,φ = 0, thus eliminating the dominant contribution. In this case, weaker contributions of terms sampling the noise spectral
density at non-zero frequencies will become relevant. These gλ0,φ = 0 working points are the dynamical sweet spots.

Based on a similar argument as in Appendix D.1, we can prove that the condition gλ0,φ = 0 is closely related to the extrema of
the quasi-energy difference, according to the relation

gλ0φ =
1

2

∂ε01
∂λ

. (4)

Setting both sides of Eq. (4) to zero establishes the connection between the dynamical sweet spots and the quasi-energy extrema.
In the following, we show how the theoretical framework outlined above can be used to understand noise protection schemes

based on qubit frequency modulation and Rabi drives, as presented in Refs. [1–10].
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II. DYNAMICAL SWEET SPOTS REALIZED THROUGH QUBIT-FREQUENCY MODULATION

In Refs. [1–5], it is pointed out that qubit-frequency modulation can be harnessed for protecting a qubit from low-frequency
noise. Such protection can be established by choosing modulation parameters for which the averaged, instantaneous transition
frequency exhibits an extremum with respect to the noise parameter. Here, we confirm that the Floquet framework presented
above indeed reproduces this condition in a certain limit.

We specifically consider the case of a frequency-modulated qubit using a purely longitudinal drive as discussed in Ref.
[3]. The model Hamiltonian in this case is given by Ĥ(λ, t) = Ωge(λ, t)σ̂z/2, where Ωge(λ, t) is the time-dependent in-
stantaneous eigenenergy splitting, and λ is an external control parameter that determines the splitting. The unperturbed
Hamiltonian and perturbation operator from Eq. (1) now take on the concrete form Ĥq = Ωge(λ0, t)σ̂z/2 and Ĥint =
[∂Ωge(λ, t)/∂λ]|λ=λ0

δλ(t)σ̂z/2. (We assume that Hint is nonzero.) To phrase the calculation of decoherence rates in our pre-
vious Floquet language, we obtain the unperturbed Floquet states and corresponding quasi-energies of the frequency-modulated
qubit (in the absence of fluctuations δλ(t)). The Floquet states read

|w0(1)(t)〉 = |g(e)〉 exp

[
−
(+)

i

2

∫ t

0

dt′(Ωge(t
′)− Ω̄ge)

]
, (5)

and the corresponding quasi-energies are given by ε0(1) = −
(+)Ω̄ge/2. Different from notation in the main text, |g(e)〉 here denote

the eigenstates of σz , and we have defined the averaged transition frequency Ω̄ge =
∫ Tm

0
dtΩge(λ, t)/Tm. Within this model,

the quasi-energy difference is evidently given by the averaged qubit transition frequency, i.e., ε01 = Ω̄ge. According to Eq. (4),
dynamical sweet spots now manifest whenever the time-averaged transition frequency vanishes, ∂Ω̄ge/∂λ = 0. This is in full
agreement with the sweet-spot condition as formulated in Refs. [1–5].

The full expression of the pure-dephasing rate is calculated using Eq. (2), where the coefficients are given by

gλkφ =
1

2Td

∫ Td

0

dt eikωdt
∂Ωge(λ, t)

∂λ

∣∣∣
λ=λ0

=
1

2

∂Ωge,k
∂λ

∣∣∣
λ=λ0

. (6)

Here, Ωge,k denotes the kth Fourier coefficient of the time-periodic transition frequency. We find that this result reproduces the
one reported in Ref. [3].

III. DYNAMICAL SWEET SPOTS INDUCED BY ON-RESONANCE RABI DRIVING

It has been demonstrated that an on-resonance Rabi drive can dynamically decouple a qubit from low-frequency noise affecting
its transition frequency [6–10]. Such decoupling is sometimes also referred to as spin-locking [7, 10]. In the following, we
confirm that this protection scheme can also be understood as an instance of the dynamical sweet-spot operation discussed in
this paper.

Consider the Hamiltonian of a transversely driven qubit within RWA,

H(λ, t) =
Ωge(λ)

2
σ̂z + d(σ+e−iωdt + h.c.), (7)

where d denotes the drive strength. As before, λ = λ0 + δλ(t) is an external control parameter subjected to random fluctuations
δλ. Note that, in contrast to the previous case, there is no separate modulation (AC component) of Ωge here. Employing series
expansion in δλ, the perturbation describing the effect of noise to leading order is Ĥint = δλ(t)[∂Ωge(λ)/∂λ]λ=λ0

σ̂z/2. (We
again assume operation away from static sweet spots so that Ĥint 6= 0.) To evaluate the decoherence rates, we need to invoke
the Floquet states of the noise-free qubit, which are given by

|w0(t)〉 = cos
θ

2
|g〉 − exp (−iωdt) sin

θ

2
|e〉,

|w1(t)〉 = sin
θ

2
|g〉+ exp (−iωdt) cos

θ

2
|e〉, (8)

where θ = tan−1(d/δΩge) and δΩge = Ωge(λ) − ωd. The corresponding quasi-energies are given by ε0(1) = −
(+)ΩR/2, where

ΩR =
√
δΩ2

ge + d2 is the Rabi frequency. As a result, the quasi-energy difference for this model is given by the Rabi frequency,

i.e., ε01 = ΩR. The dynamical sweet spots therefore obey the condition ∂ε01/∂λ = ∂ΩR/∂λ = 0, which is implies δΩge = 0.
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We further compare the explicit expressions of the depolarization and pure-dephasing rates derived within our framework with
the results previously reported in the literature. We find for these rates

γφ =
1

2

[
∂Ωge(λ)

∂λ

∣∣∣
λ=λ0

cos θ

]2
Sλ(0),

γ∓ =
1

4

[
∂Ωge(λ)

∂λ

∣∣∣
λ=λ0

sin θ

]2
Sλ(±ΩR), (9)

which reproduce the results presented in Ref. [10].
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