Skip to main content

Bayesian latent structure discovery from multi-neuron recordings

Author(s): Linderman, Scott W; Adams, Ryan P; Pillow, Jonathan

To refer to this page use:
Abstract: Neural circuits contain heterogeneous groups of neurons that differ in type, location, connectivity, and basic response properties. However, traditional methods for dimensionality reduction and clustering are ill-suited to recovering the structure underlying the organization of neural circuits. In particular, they do not take advantage of the rich temporal dependencies in multi-neuron recordings and fail to account for the noise in neural spike trains. Here we describe new tools for inferring latent structure from simultaneously recorded spike train data using a hierarchical extension of a multi-neuron point process model commonly known as the generalized linear model (GLM). Our approach combines the GLM with flexible graph-theoretic priors governing the relationship between latent features and neural connectivity patterns. Fully Bayesian inference via P6lya-gamma augmentation of the resulting model allows us to classify neurons and infer latent dimensions of circuit organization from correlated spike trains. We demonstrate the effectiveness of our method with applications to synthetic data and multi-neuron recordings in primate retina, revealing latent patterns of neural types and locations from spike trains alone.
Publication Date: Dec-2016
Citation: Linderman, Scott W., Ryan P. Adams, and Jonathan W. Pillow. "Bayesian latent structure discovery from multi-neuron recordings." In Proceedings of the 30th International Conference on Neural Information Processing Systems (2016): pp. 2010-2018.
ISSN: 1049-5258
Pages: 2010 - 2018
Type of Material: Conference Article
Journal/Proceeding Title: International Conference on Neural Information Processing Systems
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.