An analytical framework for interpretable and generalizable single-cell data analysis
Author(s): Zhou, Jian; Troyanskaya, Olga G
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1mg7fv85
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhou, Jian | - |
dc.contributor.author | Troyanskaya, Olga G | - |
dc.date.accessioned | 2023-12-19T16:55:58Z | - |
dc.date.available | 2023-12-19T16:55:58Z | - |
dc.date.issued | 2022-05-01 | en_US |
dc.identifier.issn | 1548-7105 | - |
dc.identifier.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959118/ | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1mg7fv85 | - |
dc.description.abstract | The scaling of single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here, we have developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of non-linear methods. Within this framework we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory and surface estimation and enables their confidence set inference. | en_US |
dc.language | en | en_US |
dc.language.iso | en_US | en_US |
dc.relation | https://doi.org/10.1038/s41592-022-01421-6 | en_US |
dc.relation.ispartof | Nature Methods | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | An analytical framework for interpretable and generalizable single-cell data analysis | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1038/s41592-021-01286-1 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
AnalyticalFrameworkInterpretableGeneralizableDataAnalysis.pdf | 3.93 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.