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Abstract

Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity

of single-cell omics datasets demands more interpretable and robust data representation that

is generalizable across datasets. Here we developed a ‘linearly interpretable’ framework that

combines the interpretability and transferability of linear methods with the representational power

of nonlinear methods. Within this framework, we introduce a data representation and visualization

method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory, and

surface estimation and allows their confidence set inference.

Single-cell exploratory analysis methods, including visualization methods and approaches

for trajectory estimation, rely on either linear or non-linear data representation, each

of which currently presents important limitations to single-cell data analysis. Linear

dimensionality reduction methods, including Principal Component Analysis (PCA), provide

high interpretability via linear maps. We define linear interpretability as the properties

of linear representations that allow intuitively understanding and comparing data in the

representation space. Specifically, linear interpretability means any position, direction, or

distance in the representation space has a clear meaning in the original data space, for

example, the position of a cell may represent a linear combination of expression scores of

multiple genes, and such mapping is invariant regardless of position in the representation

space. Such invariance further allows comparison of different subregions of a representation,
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such as comparing cell states in different developmental stages in the same dataset.

Moreover, linear interpretability allows applying the same low dimensional projection to

different datasets, producing comparable representations. However, linear dimensionality

reduction methods typically cannot efficiently represent cell identities in single-cell data:

spatial adjacency in low-dimensional representations is not as good predictor of similarity in

overall expression state compared to nonlinear methods.

These limitations have led to wide use of nonlinear representations on single-cell omics,

including t-distributed stochastic neighbor embedding (t-SNE)1, UMAP2 and others3–5.

Trajectory estimation methods6–10 can also often be considered specialized nonlinear data

representation methods. However, they generally lack the desirable linear interpretability

properties enjoyed by linear methods. These limitations present a practical barrier to

compare or integrate datasets at scale. Moreover, for most methods it is infeasible to apply

statistical inference to analyze uncertainties of extracted structures, making drawing robust

conclusions more difficult.

We hypothesize that the difficulty of linear dimensionality reduction for single-cell data

arises from high level of noise: high dimensionality is necessary to capture similarities

between cells when each individual dimension is noisy, and this renders low dimensional

linear representations less appealing. Indeed, all popular nonlinear methods for single-cell

omics data use high-dimensional information, which is often represented by distances

between cells from high dimensional input, thus effectively reducing the effect of noise.

We reasoned that allowing information-sharing across cells leveraging high-dimensional

information could improve the quality of cell state representation while preserving the linear

space and its interpretability.

We therefore developed a ‘linearly interpretable’ framework for exploratory analysis of

single-cell omics data, which includes methods that exactly or approximately preserve

the linear interpretability but improve upon linear methods on cell state representation

quality or other desired properties. Specifically we developed two methods that complement

each other: a dimensionality reduction and visualization method, GraphDR, and a general

structure extraction method, StructDR, that unifies cluster, trajectory, and surface estimation

under the same framework and enables inference of confidence sets for these structures.

We designed GraphDR to be a graph-based linearly interpretable data representation

and visualization method that addresses the limitations of linear representations in single-

cell data (Figure 1a, Methods). We achieved these desired properties by considering a

flexible class of methods that improves over linear methods but maintains interpretability

by introducing nonlinearity specifically for information sharing across cells. Specifically,

GraphDR applies: (1) a feature (e.g. gene) space transformation W , as in linear methods, and

(2) an interpretability-preserving cell space transformation K that introduces nonlinearity

and improves cell state representation.

GraphDR applies a cell space transformation derived from the analytical solution of a

graph-based optimization problem that provide information sharing across cells connected

in a graph (Figure 1a). The graph can be constructed with cell state similarities in high-
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dimensional input data and incorporate experimental designs when appropriate. GraphDR

then simultaneously optimizes the reconstruction of the input data and the consistency with

the graph. The existence of a closed-form solution makes GraphDR analytically tractable

and allows ultrafast computation scalable to very large datasets.

We first demonstrated GraphDR, PCA, and t-SNE on two distinct single-cell RNA-seq

datasets, representing developing mouse hippocampus cell types11 and mature mouse brain

cell types12 respectively (Figure 1a). GraphDR generated representations that preserved

the linear interpretability like PCA and resolved different cell types like t-SNE (Figure

1b, Extended Data Fig. 1). Importantly, this gain of interpretability was achieved without

a loss of accuracy: in a benchmark across 339 single-cell datasets with cell type

annotations10, GraphDR distinguished cell types as well as several current state-of-the-art

nonlinear methods, measured by consistency of nearest neighbors in dimensionality-reduced

embedding with literature-based cell type identities (Figure 1c–d).

GraphDR also facilitates direct comparisons across datasets. To demonstrate, we used

GraphDR to analyze two planarian Schmidtea mediterranea whole-animal single-cell RNA-

seq datasets by two different labs13,14. GraphDR generated representations that could both

distinguish all cell types and be compared across datasets (Figure 1e, Extended Data Fig.

2–3). In contrast, PCA representations were comparable across the two datasets but did not

resolve specific cell types, whereas t-SNE representations resolved cell types but were not

comparable across datasets (Figure 1f).

GraphDR can incorporate experimental design information into the analysis by encoding

them into graph construction (Extended Data Fig. 3). To illustrate this, we applied GraphDR

to single-cell RNA-seq datasets from developing zebrafish embryos scRNA-seq dataset

(time-series design; Extended Data Fig. 4) and Xenopus embryos (batch + time-series

design; Extended Data Fig. 5). Interestingly, the visualization of each developmental

landscape revealed extruding branches of lineages from a continuum cell states, suggesting a

more complex paradigm than the traditional branch view of cell fate specification.

While visualization methods provide an intuitive and flexible representation of the structure

of the data, quantitatively defined structures such as clusters and trajectories often need

to be extracted to perform detailed analysis of cell types and developmental trajectories.

Existing single-cell analysis methods6–10 are still limited in the types of structures that

they can represent and, for example, do not allow for unsupervised detection of two-

dimensional surface structure (Figure 2a). Furthermore, current state-of-the-art methods do

not allow statistical inference of uncertainties of the trajectories such as through constructing

confidence sets, which is essential for assessing the robustness of the inferred trajectories.

We thus developed StructDR, a unified framework for single-cell cluster, trajectory, and

surface structure discovery based on the nonparametric density ridge estimation (NRE)

method15–17 (Methods). NRE also allows estimation of statistical confidence sets of these

structures (Figure 2a). More specifically, StructDR casts the problem of structure discovery

in single-cell data as estimating a smooth density function of cells and subsequently
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projecting cells to their corresponding positions on a set of mathematical structures called

density ridges (Extended Data Fig. 6, 7).

In StructDR, we map the problems of discovering clusters, trajectories, and surfaces

to identifying zero-, one-, and two-dimensional density ridges of the density function,

which are geometrically points, curves, and surfaces respectively. Density ridges are

generalizations of local maxima15 and are uniquely defined given any smooth density

function of cells estimated from single-cell data (Extended Data Fig. 7). Trajectory or 1D

density ridge analysis is appropriate for representing cell populations that have one dominant

direction of variation or when the top one principal direction of variation is of interest, such

as in terminally differentiating cells. In contrast, surface or 2D density ridge analysis is

appropriate for representing cell populations with two dominant directions of variation or

when the top two principal directions of variation are of interest, such as differentiating cells

that are also in cell cycle. StructDR can further connect density ridges via graph construction

to represent the global topological structure of the data. Thus, in the context of StructDR, we

consider trajectory estimation as the inference of 1D density ridges or connected graph of

1D density ridges.

We evaluated the trajectory estimation performance with a large benchmark dataset created

by Saelens et al10 including 339 single-cell datasets. StructDR showed the top overall

performance across all datasets (Figure 2b, Extended Data Fig. 8).

In addition to allow capturing the complexity of single-cell data with zero, one, two-

dimensional density ridge representations (Figure 2a, c, Extended Data Fig. 9), StructDR

can adaptively select density ridge dimensionality for each cell based on the data. For

example, when analyzing hippocampus development scRNA-seq data, StructDR captured

the cellular heterogeneity of neuronal progenitor cells going through cell cycle by a

two-dimensional surface instead of arbitrarily mapping these cells to one-dimensional

trajectories (Figure 2c). Furthermore, this analysis identified a CCK+ neurons population

between CA1 and CA2/3/4 branches within the hippocampus (Figure 2c), which was not

reported in the previous analysis of this dataset with standard methods11.

StructDR can estimate confidence sets of ridge positions when applied with linear

representations such as PCA as input (Figure 2a). We demonstrated that StructDR-inferred

confidence sets effectively controlled coverage probability of ground-truth trajectory

positions in trajectory estimation (Extended Data Fig. 10) as expected from theoretical

results.

Taken together, our work presented a linearly interpretable single-cell data analysis

framework that provides interpretable, scalable, and robust representations and facilitates

dataset comparison and integration. With the rapid growth of single cell datasets, we expect

linear interpretability to become increasingly important. We also developed a feature-rich

interactive analysis interface that supports 3D visualization, Trenti (Supplementary Figure

1), to facilitate exploratory analysis and make our tools broadly accessible. We also envision

these methods to be potentially applicable to other high-dimensional data beyond single-cell

omics data applications.
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Methods

GraphDR: a linearly interpretable data representation method

We propose a class of linearly interpretable dimensionality reduction methods, which

are nonlinear methods that produce representations that aims to maximally preserve the

interpretability of a corresponding linear subspace, while allowing other desired properties

unachievable by linear method such as information sharing across cells. We believe it

is beneficial to provide a unified viewpoint for this class of methods sharing the same

properties.

To design a linearly interpretable representation method, we first propose the form

Z = KXW , analogous to the linear dimensionality reduction Z = XW , to allow fast

computation and analytical tractability. Z represents the data representation output matrix

(n × d, where n is the number of samples and d is the number of output dimensions), X
is the input data (n × c, where n is the number of samples and c is the number of input

dimensions). W  and K are matrices that apply feature (e.g. gene) space and cell space linear

transformations that are of shape d × c and n × n respectively. In other words, we apply

both a linear projection on feature space W  like linear methods, and an additional linear

transform on cell space K which is also derived from X. The addition of cell space operator

K allows much greater flexibility in the transformation, which can be exploited to improve

the quality of the representation. For example, setting K to a block-diagonal matrix with

all entries within a block equal to 1/block-size can move all cells within one block to their

average position, leading to clustering-like behavior. In theory, an ideal K can move all cells

within the same ground truth state to the same position asymptotically in the limit of large

number of cells.

For the design of K in GraphDR, we use K = I + λL −1, which is motivated by the solution

to loss function

minimize
W , Z

XW − Z 2
2 + λ∑ i, j ∈ GGij Zi − Zj 2

2,   s . t .   W TW = I

where the first term is the typical PCA loss, and the second term is a graph-based

regularization term that encourages cells connected in the graph to be close to each other.

L is the graph Laplacian matrix of graph G. The second loss term is also shared by

a related nonlinear representation method Laplacian eigenmap. Compared to Laplacian

eigenmap, it allows a linear interpretation not available to Laplacian eigenmap and avoids

the difficulty when the graph contains disconnected components. The analytical solution

to the optimization problem is Z = I + λL −1XW , where W  is the top-n eigenvectors of

XT I + λL −1X where n is the dimensionality of Z. The existence of an analytical solution

makes it much easier to be analyzed, modified, and incorporated in downstream analyses

compared to methods that do not.
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For graph G, a practical and empirically well-performing choice for GraphDR is the nearest-

neighbors graph. The graph construction process can also incorporate experimental design or

prior knowledge information (see next section for more details).

GraphDR can also be applied with a predefined W  matrix or without reducing the

dimensionality. If W  is fixed to be identity matrix in order to preserve the original input

space, the problem becomes

minimize
Z

X − Z 2
2 + λ∑ i, j ∈ GGij Zi − Zj 2

2

The solution is also simplified as Z = KX, while K remains unchanged as I + λL −1.

Notably, preserving the input data dimensionality allows preserving the ability of choosing

a linear subspace to visualize after applying the transformation, allowing more flexible

comparison of datasets processed separately. For example, a user can construct G from PCA

transformed data and apply GraphDR to the full gene by cell matrix in order to obtain

Z without reducing dimensionality. Apply any linear transform W  to this representation

Z is equivalent to applying GraphDR with W  being the predefined features space linear

transformation matrix.

GraphDR reduce to linear representation when regularization parameter λ is 0 and the

value of λ controls the tradeoff between nonlinear regularization which contributes to

better cell type representation and preserving the interpretation of the corresponding

linear representation. Note that choosing very high values of λ may lead to some

distortion and compression of the span of the data compared to the linear representation.

Smooth interpolation between any GraphDR representation and the corresponding linear

representation can be obtained by generating a series of representations by gradually

reducing λ to 0.

For large-scale evaluation of GraphDR method, we used the data and cell type annotations

from the Saelens et al. 339-dataset benchmark10. Specifically we measured the local cell

type representation quality score by the average accuracy of predicting the cell type

identity of each cell by the cell type of its nearest neighbor by Euclidean distance in

the representation. We measured the global gene expression space preservation score by

computing the Pearson correlation between the pairwise distances in the input data space

and the pairwise distances in the representation space. The relative global gene expression

space preservation score is further computed by dividing the global gene expression space

preservation score of the PCA representation at the same dimensionality.

GraphDR graph construction incorporating experimental design

The graph construction step in GraphDR can flexibly incorporate specific experimental

design information, such as batch and time-series design (Extended Data Fig. 3), for better

representing the biological variations of interest. We provide a few examples here which

can be generalized to other scenarios: for experiments performed in two or multiple batches,

nearest-neighbor connections (if the batches contain the same cell types) or mutual nearest
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neighbor connections19 (if the batches may contain different cell types) between all pairs of

batches can be introduced in addition to the nearest-neighbor graphs constructed for each

batch; for experiments with a time-series design, the graph can be constructed by combining

the nearest neighbor graphs for each time point and the k-nearest neighbor connections

between all adjacent time points; for experiments with both batch and time series design,

in addition to constructing graph for each batch in the same way as the time-series design,

nearest neighbor connections between two batches in the same or adjacent time points can

be added.

Computational efficiency optimization for GraphDR

With the constant growth in single-cell dataset size, it is important to design fast algorithms

that scale with the dataset size. We have optimized the performance of GraphDR, resulting

in an ultrafast method that takes only 1.5 min for 1.3 million cell datasets. With only

CPU computing, GraphDR takes 5 minutes to analyze a large 1.3 million cells dataset on

a typical modern server machine (2x Xeon Gold 6148), which is 10x faster than UMAP

(52 minutes), currently one of the fastest nonlinear dimensionality reduction methods. For

very large datasets that will likely become available in the near future, we developed a

GPU-accelerated version of GraphDR, which takes only 1.5 minutes to analyze 1.3 million

cells dataset and 18 minutes for 10 million cells simulated dataset (1x Tesla V100). To

achieve this speed, each major step of computation was optimized to use fast algorithms and

implementations.

The two major steps in the GraphDR algorithms are the graph construction and the step

of solving the output Z. To speed up the graph construction step, we leveraged recent

progresses in fast approximate KNN algorithms (ANN). Exact KNN algorithms based on

ball-tree or KD-tree fit the need for small to medium-sized datasets but do not scale to very

large number of cells. For ANN algorithms, we support both the HNSW method20 from

NMSlib written in C++ with python binding, and an alternative pure python implementation

of NN-descent method21 built into the package (originally implemented by the UMAP

package2). The HNSW option is faster and used for our performance test.

In the final step of computing Z, for problems with a large number of cells, it is much

faster to avoid explicit computation of K but solving Z with a linear solver. This is

because the inverse of K,  I + λG is sparse and thus allows fast computation. To implement

the linear solver efficiently with modern multicore architecture we used libraries with

highly optimized linear algebra routines, including taking advantage of CUDA-based GPU

computation which gives the best performance.

StructDR: unified framework for structure discovery

We propose to unify cluster, trajectory, and surface estimation by formulating it as a

nonparametric density ridge estimation problem. The nonparametric density ridge estimation

problem can be solved via the subspace constrained mean shift (SCMS) algorithm16,22. The

statistical theory of nonparametric density ridge estimation is described in detail in 15,17.
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Briefly, density ridge generalizes the concept of local maxima in probability density

functions, whereas zero-dimensional density ridges are local maxima of the density

functions, one-dimensional or two-dimensional ridges are curves or surfaces which have

maximum density locally except for one or two orthogonal directions with the least negative

curvature (formal mathematical definition can be found below). Gradient based algorithms

can be generalized to identify density ridges of arbitrary dimensionality. Specifically, the

mean-shift algorithm which projects any points to zero-dimensional density ridges / local

maxima can be generalized to subspace constrained mean-shift (SCMS) algorithm which

projects points to density ridges or arbitrary dimensionality16. Therefore, zero-dimensional

ridge estimation is equivalent to clustering with mean-shift algorithm, and one- and

two-dimensional ridge estimation can be considered trajectory and surface identification

algorithms.

More formally, in a N-dimensional space and positions of cells in this space representing

cell states from single-cell data, nonparametric ridge estimation identifies positions that

satisfy the condition R = x : Gd x = 0, λd + 1 x < 0 ,15 where d is the dimensionality

of the density ridge. Gd x = 0 is the key condition that requires the projected gradient

of the density function at any position on the d-dimensional density ridges to be zero. The

projected gradient at any position x can be computed from the gradient by setting the values

on the directions of the top-d eigenvectors of the Hessian of the log density function at x
(eigenvalues ranked in descending order). Kernel density estimator with Gaussian kernel is

used to estimate the probability density function as it provides a smooth density function

that also allows fast computation of derivatives. λd + 1 x < 0 is a stability condition that

requires trajectory to include points which are ‘local maxima’ instead of ‘local minima’ in

probabilistic density function, where λd + 1 x  is the d + 1 th largest eigenvalue of the Hessian

matrix of probability density function. This condition is automatically satisfied with the

SCMS algorithm.

We use the subspace-constrained mean-shift (SCMS) algorithm (Supplementary

Information) to simultaneously solve the problem of identifying the density ridges and

projecting individual cells to the trajectory. Notably, an additional advantage of this

approach is that not only all estimated trajectory positions can be directly interpreted as

cell states in the input space, all possible cell states, including cell states not observed in the

input set, can be mapped to their corresponding positions on the density ridges.

The algorithm iteratively moves any point toward the projected gradient direction, until it

converges to a point at which the projected gradient is zero. To allow fast convergence,

the step size of each update along the projected gradient direction is decided based on

the step size of the mean-shift algorithm, which is a fix-point iteration algorithm with

good empirical convergence properties. To integrate over the projected gradient curve and

project single-cells more accurately, we prefer to use a smaller step size than the standard

mean-shift and introduce a multiplication factor a for step size which is usually set to

values <1. StructDR can be applied with arbitrary density ridge dimensionality d, and d=0

(cluster),1 (trajectory), or 2 (surface) are the most interpretable. As d increases the projected

cell positions on density ridges approaches the input data point.
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StructDR can in principle be used with any data representation, but we recommend using

it with GraphDR or linear representations such as PCA, as they allow clear interpretation

of the output by allowing any position and direction on the trajectory to have a clear

meaning in the original data space. GraphDR synergizes with StructDR by addressing the

limitation of applying the original NRE method to single cell omics data. Specifically,

the original NRE method becomes less statistically efficient when applied to single-cell

data with higher dimensionality (e.g. when the number of principal components used is >

6), limiting the method from utilizing all available information. To address this challenge,

we utilize GraphDR to generate a linearly interpretable representation of the data, which

reduces high-dimensional noise and enables StructDR to effectively use all informative

principal components for density ridge structure estimation.

Even though GraphDR and StructDR methods aim to preserve linear interpretability, they

provide nonlinear representations that do not replace linear representations in all cases. For

example, the representations for individual cells in GraphDR or StructDR representations

are not independent and statistical methods that require such assumption should not be

applied.

Estimation of confidence set of density ridge with StructDR

As described in Chen et al.17, the bootstrap confidence set can be constructed through

the following procedure: 1. first generate N bootstrap samples by via sampling with

replacement; then estimate density ridges for each bootstrap sample; 2. for each position

in the density ridge set estimated from the original sample, calculate the distance to its

nearest position in each bootstrap sample density ridge set; 3. take a-upper quantile of the

distances tα, and the a-confidence set of each estimated ridge position is constructed as a

sphere of radius tα centered at the estimated ridge position.

For interpretation of the confidence sets constructed, two properties of this approach of

constructing confidence sets for density ridge positions should be noted. First, the true

density ridges considered are the density ridges of the smoothed true data distribution after

applying the same KDE kernel. Second, the theoretical asymptotic properties of bootstrap

statistical inference are only valid for linear representations for which no cell-to-cell

dependencies have been introduced. Most nonlinear representations, including GraphDR,

introduce dependencies across cells and generalizing the bootstrap procedure to methods

such as GraphDR awaits further work. Finally, even though resampling-based methods can

be widely applied, and have indeed been applied for the analysis of stability of trajectory

estimation methods10, not all resampling estimates can be used to construct confidence sets.

In fact, in most cases they do not correspond to confidence sets, and StructDR is specifically

motivated by the statistical works on nonparametric ridge estimation15,17 which showed the

theoretical properties of bootstrap-based inference of confidence sets with these algorithms.

Adaptive density ridge dimensionality

To allow flexible representations of data containing complex structure with different

dimensionalities, we propose the use mixed-dimensionality representation that adaptively

determines ridge dimensionality. Empirically, we find mixed one and two-dimensional
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density ridges to be a robust and informative representation of data structure. In this

mode, cells with one dominant direction of variation based on the curvature of the density

function are projected onto one-dimensional density ridge, while the rest are projected onto

two-dimensional density ridges. Specifically, we modified the SCMS method to adaptively

determine, for any position in the space, the ridge dimensionality between d =1 (trajectory)

mode vs d =2 (branch point or surface) mode at every iteration. This decision is based

on the eigengap between the first and second eigenvalues of the Hessian matrix of the

log probability density function: if 
λ1 − λ2

λ1 − λ−1
 surpassed the specified threshold d =1 is

used, otherwise d =2 is used, where λ1,  λ2, and λ−1 represent the first, second, and last

eigenvalues.

Simulation study for evaluation of confidence set

We used inferred trajectory from a real dataset11 as the ground truth to generate synthetic

datasets. 100 simulated datasets are generated by adding independent Gaussian noise to

the samples from ground truth trajectory density function. For each simulated dataset, 20

bootstraps were used to construct confidence set of trajectory positions based on distance

from bootstrapped trajectories to the estimated trajectory as described in 17. The estimated

confidence sets with a coverage probability were then compared with the ground truth to

decide the true proportion of times any point at the ground truth trajectory is covered by the

confidence set constructed.

Graph construction from density ridge positions

In StructDR output, density ridges are represented by positions of data points projected to

these ridges. To allow more flexible applications we construct graph representations from

these projected points. To do so, we first construct a candidate graph connecting k-nearest

neighbors in both the projected cell space and in the input cell space. The candidate graph

is then simplified by choosing only the one nearest neighbor in 2d orthogonal or opposite

directions in the projected cell space, where d is the density ridge dimensionality (e.g.

two nearest neighbors are chosen for d = 1 or trajectories, and 4 are chosen for d = 2 or

surfaces). We chose the directions based on first-d eigenvectors of the Hessian, leveraging

the observation that density ridges typically extend on same directions as these eigenvectors.

Optional filters can be applied to remove edges based on edge length and direction. The

output of this step is a graph representation of density ridges, without imposing prior

assumption on its structure type and does not require all cells to be connected, and we

call this algorithm SimpleNNG and implemented it in our python package. To construct

a minimal graph representation that is guaranteed to connect every cell, we construct a

minimum spanning tree graph based on SimpleNNG output with two additional steps: 1.

Add edges to connect every connected component to its nearest neighbor in each of the

other connected components. 2. Extract a minimum spanning tree of the whole graph. The

MST algorithm is robust but assumes tree structure. The SimpleNNG algorithm does not

make such assumption and are thus more suitable for cyclic trajectory types or disconnected

graph. For simplicity, the MST algorithm is used in all analyses in this manuscript unless

otherwise indicated. For use with dynbenchmark package, we further convert a graph to a
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dynbenchmark-compatible graph format with backbone cells assigned based on betweenness

centralities. Cells that passed a betweenness centrality threshold of 10 times the total number

of cells are assigned as backbones of the graph.

Reporting Summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability

The 339-dataset benchmark dataset published by Saelens et

al.10 was downloaded from https://zenodo.org/record/1443566. The

unnormalized performance scores were extracted from https://github.com/dynverse/

dynbenchmark_results/blob/1ac55e6c54a950890208b1f7730092d39783dfd2/06-benchmark/

benchmark_results_unnormalised.rds. The normalized scores were computed as in 10,

with the scaling factors kept to the same values as the original methods benchmarked.

Other singe-cell datasets analyzed in this manuscript were from the following

publications6,13,14,18,23–26. Scanpy package8 was used for preprocessing steps as described

in 27 when needed. We created a Zenodo record for https://zenodo.org/record/371098028 that

contains all the input data used in this manuscript.

Code availability

All methods described in this manuscript are implemented in an open-source python

package quasildr https://github.com/jzthree/quasildr. A Code Ocean capsule of the package

is provided (https://doi.org/10.24433/CO.9410876.v1)29.
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Extended Data

Extended Data Fig. 1. Visualization of first two principal components in PCA, GraphDR, and
tSNE visualizations.
We compared the PCA, GraphDR, and tSNE representations by the values of first two

principal components (PCs, shown by color) on a developing mouse hippocampus dataset

(a-b) (Hochgerner et al. 201811) and a mature mouse brain dataset (c-d) (Zeisel et al.

201818). The top weighted genes by absolute values for the first two PCs are also shown (b,

d).
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Extended Data Fig. 2. Dataset alignment with GraphDR further improves dataset comparison.
Comparison with applying GraphDR without (a, c) and with (b, d) graph-based dataset

alignment on two hematopoietic datasets (Nestorowa et al. 201625 and Paul et al. 201526).

The GraphDR visualizations are colored by cell types (a, b) and by datasets (c, d). The cell

types are common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs),

lymphoid multipotent progenitors (LMPPs), long-term HSCs (LTHSC), megakaryocyte-

erythrocyte progenitors (MEPs), multipotent progenitors (MPPs). Specifically, GraphDR

with graph-based dataset alignment constructs a joint graph that also connects the nearest

neighbors between datasets (see batch design in Extended Data Fig. 3).

Zhou and Troyanskaya Page 13

Nat Methods. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3. Experimental design encoding through graph construction.
Experimental design information can be encoded through graph construction in GraphDR.

Each arrow indicates that nearest-neighbor connections are established between the two

groups, where two connected cells are in the two different groups. Self-loop indicates

nearest-neighbor connections from cells within a group. Basic design constructs a nearest

neighbor graph using all cells, which is suitable for single-batch experiments or experiments

with minimal batch effects. Batch design addresses batch effects by introducing nearest-

neighbor connections between all pairs of batches, in addition to with-in batch nearest-

neighbor connections. Time-series design extends basic design by only allowing connections

between the same and adjacent time points. Batch + time series design introduces nearest

neighbor connections between two batches in the same or adjacent time points.
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Extended Data Fig. 4. Visualization of zebrafish whole embryo single-cell developmental
landscape with GraphDR.
Application of GraphDR to a single-cell dataset (Farrell et al. 201823) with a time-series

design. a. Single-cell visualization by GraphDR, colored by developmental stages. b.

Comparative visualization of developmental stages. This shows the “cross-section” view

by visualizing the second and third dimensions. c-d. Single-cell visualization by GraphDR,

colored by cell origins.
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Extended Data Fig. 5. Visualization of Xenopus tropicalis whole embryo single-cell
developmental landscape with GraphDR.
This is an example of applying GraphDR to a single-cell dataset with a batch+time-

series design (Briggs et al. 201824). a. Single-cell visualization by GraphDR, colored by

developmental stages. b. Comparative visualization of developmental stages. This shows

the “cross-section” view by visualizing the second and third dimensions. c-d. Single-cell

visualization by GraphDR, colored by cell origins.
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Extended Data Fig. 6. Schematic overview of StructDR density ridge estimation procedures with
the SCMS algorithm.
(a-b) StructDR starts from performing kernel density estimation with Gaussian kernel on

the input cells. (c) Based on the estimated density function, and a selected density ridge

dimensionality d (d=1 in this example), the SCMS update can be derived for any position

in the space from the gradient and Hessian of the log density function. For any data point

or position of interest, iteratively updating the position with the SCMS update will project

the data point or position to density ridges of chosen dimensionality. (d). Optional step:

construct graph connecting points on the density ridges with one of two optional methods

(Methods). The backbone of the graph can be specified based on a betweenness centrality

threshold.

Zhou and Troyanskaya Page 17

Nat Methods. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 7. Overview of the unified framework of cluster, trajectory, and surface
analysis with StructDR.
(a) StructDR uses the SCMS update for the estimation of clusters, trajectories, and surfaces,

which can all be derived based on gradient and Hessian of log density function. (b)

Examples of projection paths by SCMS updates for zero, one, and two-dimensional density

ridges. (c). Comparisons of SCMS algorithms for 0, 1, 2, or k-dimensional density ridges.

The SCMS update can identify any k-dimensional density ridges, by projecting a gradient-

based update onto subspace spanned by the k+1 th to last eigenvector of the Hessian of log

density function.
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Extended Data Fig. 8. Performance score distributions on the 339-dataset benchmark shown by
dataset type.
Per-dataset performance scores are computed based on Saelens et al. 2019. The performance

score distributions are shown with violin plots, separated into panels by dataset types. The

performance of applying StructDR + GraphDR with two graph construction algorithms,

MST and SimpleNNG, are shown along with the performance of other algorithms

benchmarked in Saelens et al. 201910.
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Extended Data Fig. 9. Trajectory identification with zero, one, and two-dimensional density
ridges example on a developmental hippocampus single-cell dataset.
The circle symbols indicate zero-dimensional density ridge positions (local maxima of

density function). The red dots indicate one-dimensional density ridge positions (trajectory).

The black dots indicate two-dimensional density ridge positions.
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Extended Data Fig. 10. Simulation studies of confidence sets construction with nonparametric
ridge estimation.
100 simulation datasets were generated. For each dataset the confidence sets for each

estimated trajectory were estimated with 20 bootstraps. x-axis shows the expected coverage

probabilities of the constructed confidence sets. y-axis shows the observed proportion that

the true trajectory position is covered by the confidence set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Zhou and Troyanskaya Page 21

Nat Methods. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

The authors acknowledge all members of the Troyanskaya lab and Zhou lab for helpful discussions. This work was
performed using the high-performance computing resources, supported by the Scientific Computing Core, at the
Flatiron Institute and the BioHPC at UT Southwestern Medical Center. J.Z. is supported by the Cancer Prevention
and Research Institute of Texas grant (RR190071) and the UT Southwestern Endowed Scholars program. O.G.T.
is supported by National Institutes of Health grant nos. R01HG005998, U54HL117798 and R01GM071966, U.S.
Department of Health and Human Services grant no. HHSN272201000054C and Simons Foundation grant no.
395506. O.G.T. is a senior fellow of the Genetic Networks program of the Canadian Institute for Advanced
Research.

References

1. Van Der Maaten L. & Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res. (2008).

2. McInnes L, Healy J, Saul N. & Großberger L. UMAP: Uniform Manifold Approximation and
Projection. J. Open Source Softw. (2018) doi:10.21105/joss.00861.

3. Haghverdi L, Buettner F. & Theis FJ Diffusion maps for high-dimensional single-cell analysis of
differentiation data. Bioinformatics (2015) doi:10.1093/bioinformatics/btv325.

4. Moon KR et al. Visualizing structure and transitions in high-dimensional biological data. Nat.
Biotechnol. (2019) doi:10.1038/s41587-019-0336-3.

5. Weinreb C, Wolock S. & Klein AM SPRING: A kinetic interface for visualizing high dimensional
single-cell expression data. Bioinformatics (2018) doi:10.1093/bioinformatics/btx792.

6. Trapnell C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat. Biotechnol. (2014) doi:10.1038/nbt.2859.

7. Bendall SC et al. Single-cell trajectory detection uncovers progression and regulatory coordination
in human b cell development. Cell (2014) doi:10.1016/j.cell.2014.04.005.

8. Wolf FA, Angerer P. & Theis FJ SCANPY: Large-scale single-cell gene expression data analysis.
Genome Biol. (2018) doi:10.1186/s13059-017-1382-0.

9. Farrell JA et al. Single-cell reconstruction of developmental trajectories during zebrafish
embryogenesis. Science (80-. ). (2018) doi:10.1126/science.aar3131.

10. Saelens W, Cannoodt R, Todorov H. & Saeys Y. A comparison of single-cell trajectory inference
methods. Nat. Biotechnol. (2019) doi:10.1038/s41587-019-0071-9.

11. Hochgerner H, Zeisel A, Lönnerberg P. & Linnarsson S. Conserved properties of dentate
gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat.
Neurosci. (2018) doi:10.1038/s41593-017-0056-2.

12. Marques S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous
system. Science (80-. ). (2016) doi:10.1126/science.aaf6463.

13. Fincher CT, Wurtzel O, de Hoog T, Kravarik KM & Reddien PW Cell type transcriptome atlas for
the planarian Schmidtea mediterranea. Science (80-. ). (2018) doi:10.1126/science.aaq1736.

14. Plass M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell
transcriptomics. Science (80-. ). (2018) doi:10.1126/science.aaq1723.

15. Genovese CR, Perone-Pacifico M, Verdinelli I. & Wasserman L. Nonparametric ridge estimation.
Ann. Stat. 42, 1511–1545 (2014).

16. Ozertem U. & Erdogmus D. Locally defined principal curves and surfaces. J. Mach. Learn. Res.
(2011).

17. Chen YC, Genovese CR & Wasserman L. Asymptotic theory for density ridges. Ann. Stat. (2015)
doi:10.1214/15-AOS1329.

18. Zeisel A. et al. Molecular Architecture of the Mouse Nervous System. Cell (2018) doi:10.1016/
j.cell.2018.06.021.

19. Haghverdi L, Lun ATL, Morgan MD & Marioni JC Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. (2018) doi:10.1038/
nbt.4091.

Zhou and Troyanskaya Page 22

Nat Methods. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Malkov YA & Yashunin DA Efficient and robust approximate nearest neighbor search using
Hierarchical Navigable Small World graphs. IEEE Trans. Pattern Anal. Mach. Intell. (2018)
doi:10.1109/tpami.2018.2889473.

21. Dong W, Charikar M. & Li K. Efficient K-nearest neighbor graph construction for generic
similarity measures. in Proceedings of the 20th International Conference on World Wide Web,
WWW 2011 (2011). doi:10.1145/1963405.1963487.

22. Saragih JM, Lucey S. & Cohn JF Subspace Constrained Mean-Shift. Proc. IEEE Int. Conf.
Comput. Vis. (2009) doi:10.1109/ICCV.2009.5459377.

23. Farrell JA et al. Single-cell reconstruction of developmental trajectories during zebrafish
embryogenesis. Science (80-. ). (2018) doi:10.1126/science.aar3131.

24. Briggs JA et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell
resolution. Science (80-. ). (2018) doi:10.1126/science.aar5780.

25. Nestorowa S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell
differentiation. Blood (2016) doi:10.1182/blood-2016-05-716480.

26. Paul F. et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell
(2015) doi:10.1016/j.cell.2015.11.013.

27. Zheng GXY et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun.
8, 14049 (2017). [PubMed: 28091601]

28. Zhou J. & Troyanskaya O. An analytical framework for interpretable and generalizable single-cell
data analysis (Dataset), Zenodo. 10.5281/zenodo.3710980

29. Zhou J. & Troyanskaya O. An analytical framework for interpretable and generalizable single-cell
data analysis (Code Ocean, 2021); 10.5281/zenodo.3710980

Zhou and Troyanskaya Page 23

Nat Methods. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. A linearly interpretable data representation method that captures the structure of
single-cell data while preserving interpretability and transferability.
a. Schematic overview of the linearly interpretable data representation method GraphDR for

single-cell omics data representation and visualization. GraphDR approximately preserves

the structure and interpretability of a corresponding linear transform. b. Visualization of

two example datasets of developmental trajectory11 (top) and mature cell types18 (bottom)

using GraphDR and representative linear and nonlinear methods, PCA and t-SNE. GraphDR

is applied without rotation relative to PCA (Methods). c. Comparison of single-cell data
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dimensionality reduction methods in representing cell type identity and preserving gene

expression space. Y-axis shows the accuracy of recovering cell type information from its

nearest neighbor in the representation. X-axis shows preservation of the input linear space

measured in correlation of pairwise distance. Both two-dimensional (triangles) and three-

dimensional (solid dot) representations are compared. d. Cell type identity representation

accuracies in multiple numbers of dimensions for single-cell data dimensionality reduction

methods. e-f. Linearly interpretable transform facilitates comparison across datasets,

balancing advantages of linear and nonlinear transform. Two planarian single-cell datasets

(e. left panel and f. top panel: Fincher et al. 2018; e. right panel and f. bottom panel: Plass et

al. 2018) were processed with a representative linear transform PCA, a nonlinear transform

t-SNE, and GraphDR.
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Figure 2. Density-based generalized trajectory estimation and inference.
a. Schematic overview of the StructDR framework. Left panel: zero-, one-, and two-

dimensional density ridges and examples of corresponding biological structures. Mid panel:

an example of trajectory estimation (1-dimensional density ridge) based on myoblast single-

cell RNA-seq data6. The original cell positions are shown in black dots; the projected

positions are shown in blue; and the projection lines are shown in dotted lines. Gray shades

show confidence sets of trajectory positions. Right panel: the top plot shows an annotated

example of confidence set estimation. The bottom plot depicts the elements of the subspace

Zhou and Troyanskaya Page 26

Nat Methods. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constrained mean-shift algorithm16; the arrows indicate gradient vectors of the probability

density function; the bars indicate the directions of first eigenvectors of the Hessians of

the log probability density function; the kernel density estimator-based density function is

shown with the contour plot; the estimated trajectory positions are shown in blue dots. b.
Performance of StructDR+GraphDR and StructDR+PCA tested on a published large-scale

benchmark of 339 datasets. The performance scores are computed based on Saelens et

al. 201910. StructDR is applied with 1D density ridge estimation and automated graph

construction for cells projected onto the density ridge. c. Density ridge identification with

adaptive dimensionality example on a hippocampus developmental trajectory single-cell

dataset11. Cells projected to one-dimensional (black dots) and two-dimensional density

ridges (blue dots) are shown, where the dimensionality of density ridge is adaptively

determined based on the data. Insets show the gene expression levels of the indicated genes

in sub-regions of the representation.

Zhou and Troyanskaya Page 27

Nat Methods. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Methods
	GraphDR: a linearly interpretable data representation method
	GraphDR graph construction incorporating experimental design
	Computational efficiency optimization for GraphDR
	StructDR: unified framework for structure discovery
	Estimation of confidence set of density ridge with StructDR
	Adaptive density ridge dimensionality
	Simulation study for evaluation of confidence set
	Graph construction from density ridge positions
	Data availability
	Code availability

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	Extended Data Fig. 10
	References
	Figure 1.
	Figure 2.

