Skip to main content

Cellular-Assisted, Deep Learning Based COVID-19 Contact Tracing

Author(s): Yi, Fan; Xie, Yaxiong; Jamieson, Kyle

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1bz6179r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYi, Fan-
dc.contributor.authorXie, Yaxiong-
dc.contributor.authorJamieson, Kyle-
dc.date.accessioned2023-11-03T13:53:33Z-
dc.date.available2023-11-03T13:53:33Z-
dc.date.issued2022-09-07en_US
dc.identifier.citationYi, Fan, Xie, Yaxiong, and Jamieson, Kyle. "Cellular-Assisted, Deep Learning Based COVID-19 Contact Tracing." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 3 (2022): 1-27. doi:10.1145/3550332en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1bz6179r-
dc.description.abstractThe Coronavirus disease (COVID-19) pandemic has caused social and economic crisis to the globe. Contact tracing is a proven effective way of containing the spread of COVID-19. In this paper, we propose CAPER, a Cellular-Assisted deeP lEaRning based COVID-19 contact tracing system based on cellular network channel state information (CSI) measurements. CAPER leverages a deep neural network based feature extractor to map cellular CSI to a neural network feature space, within which the Euclidean distance between points strongly correlates with the proximity of devices. By doing so, we maintain user privacy by ensuring that CAPER never propagates one client's CSI data to its server or to other clients. We implement a CAPER prototype using a software defined radio platform, and evaluate its performance in a variety of real-world situations including indoor and outdoor scenarios, crowded and sparse environments, and with differing data traffic patterns and cellular configurations in common use. Microbenchmarks show that our neural network model runs in 12.1 microseconds on the OnePlus 8 smartphone. End-to-end results demonstrate that CAPER achieves an overall accuracy of 93.39%, outperforming the accuracy of BLE based approach by 14.96%, in determining whether two devices are within six feet or not, and only misses 1.21% of close contacts. CAPER is also robust to environment dynamics, maintaining an accuracy of 92.35% after running for ten days.en_US
dc.format.extent1 - 27en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologiesen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleCellular-Assisted, Deep Learning Based COVID-19 Contact Tracingen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1145/3550332-
dc.identifier.eissn2474-9567-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
DeepLearningCovidContactTracing.pdf1.5 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.