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The coronavirus disease (COVID-19) pandemic has caused social and economic crisis to the globe. Contact tracing is a proven

effective way of containing the spread of COVID-19. In this paper, we propose CAPER, a Cellular-Assisted deeP lEaRning

based COVID-19 contact tracing system based on cellular network channel state information (CSI) measurements. CAPER

leverages a deep neural network based feature extractor to map cellular CSI to a neural network feature space, within which

the Euclidean distance between points strongly correlates with the proximity of devices. By doing so, we maintain user

privacy by ensuring that CAPER never propagates one client’s CSI data to its server or to other clients. We implement a

CAPER prototype using a software defined radio platform, and evaluate its performance in a variety of real-world situations

including indoor and outdoor scenarios, crowded and sparse environments, and with differing data traffic patterns and cellular

configurations in common use. Microbenchmarks show that our neural network model runs in 12.1 microseconds on the

OnePlus 8 smartphone. End-to-end results demonstrate that CAPER achieves an overall accuracy of 93.39%, outperforming

the accuracy of BLE based approach by 14.96%, in determining whether two devices are within six feet or not, and only misses

1.21% of close contacts. CAPER is also robust to environment dynamics, maintaining an accuracy of 92.35% after running for

ten days.
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1 INTRODUCTION

The ongoing coronavirus disease (COVID-19) pandemic has already resulted in millions of deaths all around the

world, causing unprecedented social and economic crisis. Except vaccines, a proven effective way of containing the

spread of COVID-19 is accurate, complete and timely contact tracing. According to the world health organization

(WHO) [54], a close contact is a person who has been within six feet to someone that is COVID-19 positive for

more than 15 minutes. Contact tracing is the process of identifying, assessing, and managing people who are

close contacts with the contagious positive cases. Currently, contact tracing is accomplished through manually

interviewing each COVID-19 positive cases by the health authorities, which, however, is extremely labor intensive,

time consuming, and unscalable, motivating techniques that can accelerate and automate the process of contact

tracing.

The core task of contact tracing is to identify the close contacts of the positive cases, which requires comparing

the locations of two citizens. The ubiquity of smartphones, e.g., more than 81% of Americans own a smartphone
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in 2019, and their capability of performing device localization and proximity estimation make them ideal devices

for building an automatic and fast contact tracing system that scales.

Identifying close contacts by comparing the exact locations of smartphones is a straightforward solution.

There exists many mature techniques we can leverage to accurately localize the smartphones, including GPS [21],

Wi-Fi based [27, 56–59], cellular based [13], Bluetooth based [5, 28], acoustic signal based [26, 49] and visible

light based techniques [30, 61, 65]. Exposing the location to any third party, however, hinders the privacy of

both healthy citizens and the people who have been infected with the virus, making the location based solutions

impractical to implement.

Essentially, identifying close contacts only requires the distance between two people, so localizing the smart-

phones is an overkill. Knowing the proximity of devices is enough for contact tracing, which also preserves user

privacy. Proximity estimation using RSSI of Bluetooth has drawn a significant amount of attention from the

research community [11, 44, 44, 46, 51], and the industry [2, 9, 20].

A common approach, including the Google and Apple Exposure Notifications System [20], relies on signal

strength of Bluetooth beacons to identify close contacts, which is defined as a distance of 6 feet [8]. However,

such RSSI based approaches suffers from errors [64] and fail to provide accurate close contact estimation, as

there are many factors other than the distance that can affect the received signal strength, including hardware

imperfections, interference from other signals that share the ISM band and multipath effect. Furthermore, these

systems require the device to frequently transmit beacons to detect each other, which consumes a large amount

of energy and also makes the device trackable by malicious third parties. Techniques like MAC address shuffling

have been used to hide the identity of the users, so the malicious third party cannot link the location it obtained

to a physical device, which, however, can be easily hacked using techniques like RF fingerprinting [39].

(a) Location mapping. (b) CSI mapping.

Fig. 1. Mapping the physical locations of smartphones (a), and CSI measured from smartphones (b) to a high-dimensional

feature space, within which the Euclidean distance between points indicates the proximity of smartphones.

We propose a location based proximity estimation algorithm that is accurate in estimating proximity and at

the same time preserves user privacy by hiding the exact user location. We plot the intuition of our algorithm in

Figure 1(a), from which we see that, instead of directly comparing the physical locations to get the proximity

of two devices, we propose to map the locations to a point inside a high-dimensional feature space and then

calculate the Euclidean distance inside the feature space to derive the proximity. To achieve this goal, we have two

requirements for such mapping. First, we require that the Euclidean distance of two points in the feature space

indicates the proximity of their corresponding physical locations. Second, to preserve user privacy, the mapping

should be hard to reverse so any third party cannot reconstruct the exact user location using the exposed location

inside the feature space.

To realize our idea in Figure 1(a), two tasks remain unsolved: localizing the smartphone and finding a mapping

that that satisfies the aforementioned two requirements.

For the localization task, we rely on the channel state information (CSI). Using CSI, we can estimate the

parameters of all the paths the signal travels along, such as angle of arrival (AoA) and time of flight (ToF), which
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helps the proximity estimation from two aspects. First, the parameters of direct path can be directly used to

localize the smartphone [27, 57, 59]. Second, the reflections from nearby furniture, floor or walls describe the

surrounding environment near the device, so the similarity in parameters of reflection paths estimated by two

smartphones also indicates their proximity, as nearby devices share similar propagation environment.

According to the above analysis, the algorithm that translates the CSI into user locations and then performs

the mapping loses the information of the reflection multipaths. Therefore, to fully make use of the information

conveyed by CSI, we directly map the CSI to a point in the feature space, as shown in Figure 1(b). In our

implementation, we mainly rely on cellular CSI instead of Wi-Fi CSI because of two reasons. First, comparing

with Wi-Fi, the cellular signal is ubiquitous, providing national wide coverage. Second, cellular base station

broadcast reference signals at the frequency of millisecond (§2), so the smartphone is able to collect densely

sampled, uniformly distributed CSI by decoding the reference signal. Leveraging downlink CSI also eliminates

the peer-to-peer transmissions between smartphones, which prevents the smartphone from being tracked by any

malicious third parties. We use Wi-Fi as a complementary information source to further extend the coverage of

CAPER to challenging indoor scenarios, such as the basement.

For the mapping task, we propose to leverage a deep learning based feature extractor to find the mapping

that satisfies our two requirements, as shown in Figure 1(b). Recent advances in deep learning has proven that

convolutional deep neural network (CNN), is powerful in selecting representative features for diverse tasks.

Therefore, after training, a CNN based feature extractor would automatically select the set of features that

forms the desired high-dimensional feature space within which the Euclidean distance indicates the proximity.

Furthermore, the extracted features become incomprehensible when the neural network goes deep.

We implement a prototype of CAPER using USRP as frontend to collect CSI from commercial cell towers.

Extensive experimental results show that CAPER achieves an overall accuracy of 93.39%, outperforming the

accuracy of BLE based approach by 14.96%, in identifying close contacts, i.e., determining whether two devices

are within six feet or not, and only misses 1.21% of close contacts. CAPER is also robust to environment dynamics,

achieving an accuracy of 92.35% after running for ten days. Microbenchmarks show that our neural network

model runs in 12.1 microseconds on the Oneplus 8 smart phone.

2 LTE PRIMER

In this section, we introduce the LTE primer. We focus on the frequency division duplexing (FDD), the most

widely used mode in current deployed commercial cellular network.

Fig. 2. LTE groupsmultiple REs into a PRB. Inside each PRB, the base station transmits

CRS at specific REs, whose channel can be directly estimated. Mobile client performs

interpolation to derive channel estimations of all REs.

Fig. 3. A mobile client in DRX mode

wakes up periodically to receive data

from base station.

Physical layer frame structure. LTE adopts OFDM in the physical layer, so the smallest time-frequency unit is

one subcarrier in frequency and one OFDM symbol in time, which is also denoted as one resource element (RE).

LTE groups all REs inside a block spanning seven OFDM symbols and 12 subcarriers into a physical resource
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block (PRB), as shown in Figure 2. To support multiple access, LTE divides the time into one millisecond length

subframes and allocates the PRBs inside each subframe to one or multiple mobile users for data transmission.

Channel estimation in LTE network. To facilitate channel estimation, the base station transmits predefined

cell specific reference signal (CRS), inside several specific REs of a PRB, as shown in Figure 2. The CRSs transmitted

by multiple antennas of one base station are non-overlapping with each other, so a mobile client can separate

them and estimate the channel between each transmitting antennas and its receiving antenna independently.

Since the sequence of CRS is known, a mobile client is able to estimate the channel of all REs that carry CRS. To

obtain the channel estimation of every RE, the mobile client performs a two-dimensional interpolation, i.e., over

time and frequency, as shown in Figure 2. We note that the base station always broadcast the CRS no matter it

has data to transmit or not, so a mobile user can estimate the downlink channel at any time point.

Discontinuous reception (DRX). To save energy, the cellular network supports discontinuous reception (DRX)

mode, in which the mobile user wakes up periodically, e.g., every 10 subframes or milliseconds, to receive, if there

is any, data from the base station. The interval between two waking up events is one DRX cycle, as shown in

Figure 3.

Radio resource control (RRC) modes. A cellular mobile client is in RRC connected mode when it is commu-

nicating with the cell tower, and enters RRC idle mode when the transmission finishes. A mobile client in idle

mode adopts DRX to periodically wake up to receive any possible messages from the base stations. To prepare

for possible handover, each mobile client also periodically measures the channel quality of neighbouring cells.

3 RELATED WORK

Contact tracing is widely used to slow down the spread of COVID-19 [8]. Traditional contact tracing methods

involve case investigation, where the authority collects trajectory information of positive cases, then manually

identify their possible close contacts, and at last contact and give guidance to those potentially exposed individuals.

Case investigation has demonstrated its effectiveness in many countries, but is also extremely labor intensive,

time consuming and unscalable, which motivates technology-empowered automatic and accurate contact tracing

methods.

Localization based contact tracing. Diverse techniques have been proposed to localize mobile devices. GPS can

localize devices with meter-level accuracy in outdoor scenarios [21], but is also known to be inaccurate in indoor

environments. To address the problem of indoor localization, techniques that leverage Wi-Fi signals [27, 56–59],

Cellular signals [13], Bluetooth beacons [5, 28] and visible light [30, 61, 65] have been proposed and achieve

centimeter-level accuracy. Therefore, conducting contact tracing via localizing every citizen that carries a mobile

device is possible from a technical standpoint [2, 29, 43, 45], which, however, raises serious concerns about the

user privacy. Without getting the users’ consent to frequently upload their locations, localization-based contact

tracing becomes practically impossible. [52] propose a Wi-Fi MAC based contact tracing system, and deploy it

at two campuses. This paper also designs a graph-based model to reduce the memory usage and index update

overheads when the the number of users becomes large.

Proximity based contact tracing. Contact tracing using device proximity hides the exact user location and

thus preserves user privacy, which makes it a promising solution. Diverse techniques have been proposed to

estimate the proximity of mobile devices. WiFi based proximity estimation using RSSI of observed signal from

AP has been proposed [37, 47] and its application in contact tracing has been preliminarily investigated in [15],

which, however has error of meters to tens of meters and cannot work in outdoor scenarios where there exists

no WiFi AP. WiFi proximity using direct signal transmission between two device has also been proposed [40],

which, however, only works when the devices are in close proximity, i.e., centimeters apart. Bluetooth based

proximity estimation has been well studied [35, 36], and its application to contact tracing has been explored by
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both the research community [11, 44, 46, 51] and commercial companies like Google and Apple [20]. Most of

these contact tracing systems estimates the proximity using Bluetooth RSSI, whose value is affected by several

factors other than distance, including the hardware, interference from signals that share the 2.4 GHz ISM band

and the multipath effect, introducing significant error in the proximity estimation [64]. [60] proposes a cellular

signal based contact tracing system that applies deep neural network for close contact identification. Comparing

with [60], CAPER proposes a novel data preprocessing technique to preserve the continuity and periodicity in the

CSI phase. Furthermore, to overcome overfitting in the received wireless data, we propose a customized network

network structure by integrating multitask learning with Twin-net. CAPER also considers the problem of model

adaptation to environmental changes and apply deep adaptation networks (DAN) to continuously update the

model.

Neural networks as feature extractors. Neural networks, especially CNN, have been widely used as feature

extractors because of their advantages in capturing patterns on structured data. Therefore, researchers have

applied neural networks to address various communication and sensing tasks in wireless domain. RF-Pose3D

[63] uses CNN to estimate 3D poses from RF signals. RF-EATS [22] applies fully-connected neural networks to

address the liquid sensing problem. [34] runs RNN to realize room-scale hand tracking. DLoc[4] achieves a high

accuracy for indoor localization by applying a CNN based localization algorithm. Our work different from the

above systems leverages CNN to extract proximity features from pair of CSIs.

4 CAPER DESIGN

Overlapping 
cell

Feature extractor

Preprocessing
and

Normalization

Features

Cell info
Timestamp

Updated model

Continuous
model update

Close contact 
identifier

Server 

User 1

User 1

User 2

User 2

Fig. 4. The system architecture of CAPER. The mobile clients run feature extractor to map CSIs to feature vectors, and then

send feature vectors packed with cell information and timestamps to the server. The server stores feature vectors reported by

all mobile clients, and run close contact identifier to find all exposed users.

In this paper, we propose CAPER, a cellular-assisted, deep learning based contact tracing system, whose

architecture is plotted in Figure 4. Generally, CAPER consists of the mobile client side data preprocessing module

in Section 4.1 along with feature extractor module in Section 4.2, and server side close contact identifier in

Section 4.3. Continuous model updating module and coverage extension are detailed in Section 4.4 and 4.5,

respectively.

Mobile client side. Each cellular-connected mobile client first measures the CSI of the channels between itself

with multiple cell towers, then maps the CSI to a vector of contact features via a deep-learning based feature

extractor, and at last tags each feature vector with timestamp and information about the cell from which the CSI is

measured, including the cell ID, antenna number, and bandwidth. We note that, each user reports feature vectors

of multiple detected cell towers, so it is difficult to accurately localize the user using the cell IDs associated with
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the features vectors as the combination of cell towers usually covers a large area of tens of square kilometers. The

mobile client regularly uploads the extracted feature vectors together with the tagged information to the server.

Server side. The server stores feature vectors reported by all mobile clients. If one user tests positive for COVID-

19, this user may choose to send a warning message to the server and unveil its identity. Upon receiving the

message, the server starts the proximity estimation process to find all potentially exposed users, which consists

of two step. First, to narrow down the search space, the server identify all the users who appear at the same cell

coverage area at the same time with positive COVID-19 users, by checking the timestamp and cell information list

associated with positive COVID-19 users against the list of all other users. Second, the server runs close contact

identifier with feature vectors of potentially exposed users and that of positive COVID-19 users to further find

out users who have close contacts with positive cases. To handle environment dynamics, the server continuously

updates the feature extractor and then distributes the updated model to the mobile clients.

4.1 Data Preprocessing

The extracted CSI has a granularity of 14 samples per millisecond in RRC connected mode, which has information

redundancy in time domain. To reduce the number of CSI being processed, we downsample the CSI to one sample

per 32ms, if the extracted CSI is finer than this granularity. In addition, before feeding the downsampled CSI into

the deep learning based feature extractor, we need to preprocess the CSI to eliminate the impact of noise and

then transform the raw complex CSI matrix into a form that deep neural networks can interpret.

4.1.1 CSI Error Handling. The measured CSI is noisy because of hardware imperfections. We clean the CSI by

performing CSI amplitude error correction and CSI phase offset calibration separately before feeding them into

the neural network model. For CSI amplitude, we run Hampel filter to identify and remove outlier CSIs. To

eliminate the phase error introduced by central frequency offset (CFO), sampling frequency offset (SFO) and

symbol timing offset (STO), we feed the phase difference across antennas to the deep neural network. Phase

difference captures the relative relationship between phase across antennas but loses the absolute value. We,

therefore, input the sanitized phase of the first antenna [27], to compensate for the information loss.
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Fig. 5. Continuity is lost in wrapped phase and periodicity is lost in unwrapped phase (a). Both continuity and periodicity is

kept in the polar coordinates (b).

4.1.2 Continuity and Periodicity of CSI Phase. Directly feeding the raw phase may confuse the neural network

because of two reasons. On one hand, wrapped phase data loses its continuity. The wrapping operation restrains

phase value in the range of [−𝜋, 𝜋], so it introduces frequent sudden jumps across subcarriers when the phase

value rolls back. Neural networks are sensitive to sudden value changes, since jumps may convey important
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information about the input data, e.g., spikes in time series or edges in images. The phase jump caused by phase

rollbacks are meaningless in phase data, but could draw significant attention of the neural network during training

and thus mislead the network to select features that explains these jumps. On the other hand, the unwrapped

phase data loses its periodicity. Theoretically, the phase value 𝜃 equals the phase value 𝜃 + 2𝜋 . We lose such a

relationship in the unwrapped data, as shown in Figure 5(a), so the neural network may misinterpret the phase

value and thus miss the meaningful pattern conveyed inside the phase value.

According the above analysis, we conclude that inputting the raw phase value can only keep one characteristic

of the phase, either the continuity or periodicity. To simultaneously maintain both the continuity and periodicity,

we propose to input the polar representation of the raw phase. Specifically, we map raw phase data 𝜃 to its

corresponding point on the unit circle, as shown in Figure 5(b), and uses the coordinate [cos𝜃, sin𝜃 ] of such a

point to represent the raw phase. We could see from Figure 5(b) that both the x-coordinate value and y-coordinate

value are continuous and periodic across subcarriers. To guarantee that no information is lost, we input both the

x-coordinate cos𝜃 and y-coordinate sin𝜃 to our deep-learning based feature extractor.

4.1.3 Normalization. Data normalization is a widely used technique to make the training process faster and

more effective [6, 48]. We calculate the maximum amplitude over a 10-minute sliding window and then normalize

the CSI amplitude according to the amplitude maximum inside the window. For CSI phase, we could see from

Figure 5(b) that all phase are naturally normalized to the range of [−1, 1] after being mapped to the unit circle.
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…

ResNet Block 4 2 FC Layers
1 64 

Feature Vector 2

CSI Input 1
1 64 

Feature Vector 1

L2 norm Contrastive 
Loss

…

……

Feature Extractor

…
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Fig. 6. The architecture of Siamese network, which runs two identical neural networks on two CSIs and outputs two feature

vectors. It further feeds the L2 normalization of the two feature vectors into the contrastive loss function. The highlighted

part shows the structure of our CNN based contact feature extractor.

4.2 CNN based Contact Feature Extractor

CAPER leverages a deep neural network to automatically select a set of features of the CSI. The requirement of

the selected features is that the Euclidean distance between the feature vectors of any two CSIs represents the

physical proximity of two mobile clients from which the CSIs are measured. We plot the structure of CAPER’s

deep learning based feature extractor in Figure 6. To fit deep learning model into mobile phones, we use half of the

ResNet18 [24] layers in our feature extractor. The neural network initiates with one layer of 1×7 one-dimensional

convolution, followed by 4 ResNet blocks, each consisting of 2 layers of 1 × 3 one-dimensional convolution. We

add two fully connected layers after the ResNet block, which converts the intermediate outputs of convolutional

layers into the final 1 × 64 feature vector.
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4.2.1 Training the Contact Feature Extractor. Given the structure in Figure 6, we now introduce how to train the

contact feature extractor to find the representative features.

Training with Siamese (twin) neural network. We adopt the Siamese (sometimes called the twin) neural

network to train our feature extractor [7], which consists of two identical neural networks that run in parallel, as

shown in Figure 6. These two neural networks share weights, and thus extract the same set of features of the

input CSI. The Siamese network outputs the Euclidean distance of two feature vectors, which are extracted by

the two parallel neural networks.

The goal of training is to minimize the loss function over the training dataset. We use contrastive loss [23] as

our loss function, which is defined as:

L𝑐 = 𝑌 · 𝐷2 + (1 − 𝑌 ) · [max (0,𝑚 − 𝐷)]2 (1)

where L𝑐 represents the contrastive loss; 𝐷 is the Euclidean distance of the two feature vectors generated from

the two feature extractors; and 𝑌 is the proximity ground truth of two CSI inputs, which is a binary value

representing whether the two devices are close or not. The𝑚 is a configurable hyperparameter whose value is

set to 2 in our training.

The combination of Siamese network and contrastive loss turn the training process into a process of finding

the weights that guarantee the Euclidean distance is minimized for any CSI pairs that are measured from two

mobile devices that are within six feet, i.e. the close contacts; and maximized for CSI pairs that are measured

from two far away mobile devices. Specifically, for CSI pairs with ground truth 𝑌 = 1, i.e. two devices are close

contact with each other, the loss equals to:

L𝑐 = 𝐷2 (2)

so the training goal becomes minimizing the Euclidean distance 𝐷 of feature vectors of the CSI pair. On the other

hand, for CSI pairs with ground truth 𝑌 = 0, i.e. two far away devices, the loss equals to:

L𝑐 = [max(0,𝑚 − 𝐷)]2 (3)

where the training goal becomes maximizing the Euclidean distance 𝐷 . Furthermore, we see from Eq. 3 that, the

contrastive loss focuses on maximizing the feature space distance of CSI pairs from two far away devices but

have Euclidean distances 𝐷 smaller than the hyper-parameter𝑚 and ignore the CSI pairs whose distance 𝐷 are

already large enough.

Multi-task learning. We observe in our experiments that the model trained with contrastive loss suffers from

overfitting. The candidate contact feature space is large so the Siamese network may select features that closely fit

the dataset but have no connection with the physical location of mobile users or with the similarity between two

user locations. Hence, we apply domain knowledge to guide the neural network model to extract generalizable

features that are linked to the physical location of the mobile user.

The domain knowledge we have is the AoA and ToF of multipaths around the mobile user, which can be

estimated using SpotFi [27] from CSI. Furthermore, we expect the feature extractor to be able to extract contact

features representing AoA and ToF, since they are directly related to the physical locations of users. Therefore,

we propose to teach the feature extractor to learn desirable contact features with the ToF and AoA we estimated

using SpotFi.

To combine our domain knowledge with the training process of the feature extractor, we create two additional

tasks: estimating AoA and time difference of flight (TDoF) using neural network1, and propose to solve three

tasks simultaneously using multi-taks learning [12]. We plot a widely used architecture of multi-task learning

in Figure 7, in which a shared subnetwork learns the shared features among tasks and multiple task-specific

1Here we estimate TDoF between different multipaths because the absolution ToF is inaccurate without time synchronization, while the

difference between ToF of multipaths is accurate and stable [57].
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Fig. 7. The architecture of a multi-task learning network.

Fig. 8. The architecture of our training network designed according to multi-task attention network (MTAN).

subnetworks handles the uniqueness of its corresponding task. In our case, we train the shared subnetwork to

learn features representing AoA and ToF, which is related to all three tasks: these features directly help AoA and

ToF estimation tasks and also contribute to the feature extractor since they are related to the physical location

of the user. Massive prior works that adopt multi-task learning in diverse applications have demonstrated that

the shared subnetwork is able to learn the shared representing features (related to AoA and ToF), which in turn

boosts the performance of each individual task.

To realize our idea, we use multi-task attention network (MTAN) [31] as a reference to design our end-to-end

training network. We connect part of the neural network of our primary task, i.e., contact feature extraction, to

the subnetworks of the other two tasks, as shown in Figure 8, and train the shared network to learn both primary

task specific features and global features that has impact across all tasks. The task two and three select a set of

features in which they are interested, from the global feature pool using an attention module, and then feed the

selected features into their task specific subnetworks. We use mean square error (MSE) of the prediction error as

the loss for task two and task three, which is defined as:

L𝑚 =

∑𝑛
𝑖=1

(
𝑦𝑖 − 𝑦

𝑝
𝑖

)2
𝑛

, (4)

where𝑦𝑖 and𝑦
𝑝
𝑖 are estimated (using SpotFi) and predicted (using neural network) AoA or TDoF values respectively,

and 𝑛 is the number of estimations we have, i.e., given that we estimate the parameters of 𝐿 multipaths using

SpotFi, we have 𝑛 = 𝐿 for AoA estimation and 𝑛 = 𝐿−1 for TDoF estimation since we calculate the time difference

across multipaths.

End-to-end network.We implement our end-to-end training network by combining the Siamese network in

Figure 6 and the multi-task learning network in Figure 8. The final loss L𝑓 of the whole network is the sum of
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Fig. 9. Each smartphone reports the feature vectors of a group of neighbouring cells. Two smartphones may have one or

multiple overlapping cells in their reported data.

the contrastive loss of our primary task and the MSE loss of AoA and TDoF estimation tasks we create:

L𝑓 = L𝑐 +

2∑
𝑖=1

𝛽𝐴L
𝑖
𝑚,𝐴 +

2∑
𝑖=1

𝛽𝑇L
𝑖
𝑚,𝑇 (5)

where 𝛽𝐴 and 𝛽𝑇 is the weighting hyperparameter controlling the contribution of AoA and TDoF estimation

tasks to the final loss, and we report their values in Section 6; the L𝑖
𝑚,𝐴 and L𝑖

𝑚,𝑇 are the MSE loss of the AoA and

TDoF estimation tasks associated with the two parallel neural network in the Siamese network. By minimizing

the loss L𝑓 , the neural network solves all tasks simultaneously.

4.2.2 Diverse Physical Layer Configurations. The configurations of the cellular physical layer determine the size

of CSI matrices that are fed into the contact feature extractor. To be more specific, the size of the CSI matrix is

represented as 𝑀 × 𝑁 × 𝑆 , where 𝑀 and 𝑁 is the number of antennas in array of the base station and the mobile

phone, respectively, and 𝑆 is the number of subcarriers, which is determined by the channel bandwidth of the

base station 2.

The physical layer configuration varies across base stations and mobile devices, so the size of CSI varies

accordingly. A possible solution is to train one model to handle one corresponding input CSI size and distribute all

the models to the mobile device, which, however, results in large training overhead since the number of possible

CSI sizes is large. Specifically, in real implementation, the base station may have one, two or four antennas in its

array, and communicate using a 5 MHz, 10 MHz and 20 MHz channel, and most of current smartphone have two

antennas, resulting in nine possible bandwidth and array size combination. To reduce the training overhead, we

only train for the combinations of one base station antenna (𝑀 = 1), two mobile phone antennas (𝑁 = 2) and

all available bandwidth. We separate the CSI with 𝑀 > 1 into 𝑀 CSIs with antenna number 𝑀 = 1, so we can

reuse the single antenna model. As a result, for a cell with 𝑀 > 1 antennas, the 𝑖-th smartphone reports a feature

matrix:

𝐹𝑖 = [𝑓𝑖,1, . . . , 𝑓𝑖,𝑀 ]𝑇 , (6)

where 𝑓𝑖, 𝑗 is the feature vectors extracted by the CNN based feature extractor using CSI of channel between 𝑗-th
antenna of the base station to 𝑖-th user, as shown in Figure 9.

4.2.3 The CSI Time Misalignment. Two mobile devices in DRX mode may wake up at misaligned subframes and

measure CSI at different time point, as shown in Figure 3. The widely support DRX cycle are 0.32 second, 0.64

second and 1.28 seconds, so the maximum misalignment between two CSI measurements is 0.64 second, within

which the location of a mobile devices changes negligibly. We have CSI pairs with time misalignment ranging

2A mobile device measures the CSI of the entire frequency band of the channel (§2), regardless of the detailed bandwidth allocation.
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from zero to a maximum of 0.64 second in our dataset. Our experimental results in Section §7 demonstrate that

the trained model works effectively even in presence of diverse time misalignment.

4.3 Close Contact Identifier

When a positive case is reported, the server runs the close contact identifier to find all users that are potentially

exposed to the COVID-19 positive user, which involves two steps. First, the identifier reduces the search space by

finding users who has overlapping cells in their reported the feature vectors, as shown in Figure 9. Second, the

identifier scans all users found in step one and identifies all possible close contacts that has been exposed to the

positive case.

In the rest of this section, we introduce our algorithm to identify close contacts using reported feature vectors.

Since each user reports feature vectors of a group of neighbouring base stations, the number of overlapping cells

between two users may vary. We, therefore, begin with the introduction of close contact identification under the

scenario of one overlapping cell and then generalize to multi-cell cases.

4.3.1 Single Overlapping Cell. Supposing two smart phones share one base station that has 𝑀 antennas in its

array, the close contact identifier first calculates the Euclidean distance 𝐷 𝑗 between the feature vector of 𝑓1, 𝑗 and
𝑓2, 𝑗 , as shown in Figure 9, and then derive the average Euclidean distance between the feature vectors 𝐹𝑖 of two
users as:

𝐷 =
1

𝑀

𝑀∑
1

𝐷 𝑗 , (7)

based on which, the identifier makes a preliminary identification 𝑃𝑝𝑟𝑒 :

𝑃𝑝𝑟𝑒 =

{
−1, if 𝐷 ≤ 𝐷𝑡ℎ𝑟𝑒ℎ

1, if 𝐷 > 𝐷𝑡ℎ𝑟𝑒ℎ,
(8)

where 𝐷𝑡ℎ𝑟𝑒ℎ is the prediction threshold. We set 𝐷𝑡ℎ𝑟𝑒ℎ to 0.9 in our experiments. A preliminary identification of

𝑃𝑝𝑟𝑒 = −1 means the two devices, that report the two feature vectors, are within 6 feet with each other, and vice

versa.

We note that this preliminary estimation is made on a single pair of CSI, which covers only one millisecond

in time. Due to the fine granularity of downlink reference signal, we can have dense preliminary estimations

within a short period, where the specific number of estimations depends on CSI sampling rates. Therefore, we

propose to add another voting layer on top of the preliminary estimations, to mitigate the influence of sudden

environmental changes or unpredictable interference, making the close contact identifier more robust. The voting

result P𝑣 over a series of feature vector pairs is defined as follows:

P𝑣 =
𝑘∑
𝑡=1

𝑃𝑝𝑟𝑒,𝑡 (9)

where 𝑘 is the number of feature vector pairs in a voting, 𝑃𝑝𝑟𝑒,𝑡 is the preliminary estimation on the 𝑡-th feature

vector pair. If the resulting voting decision P𝑠 ≤ 0, the final estimation is that these two devices has a close

contact in the voting time span, and vice versa.

Sampling rate offset. In our current implementation, we perform one vote using all preliminary estimations

obtained from feature vector pairs from a 18-second time window. A challenge we met when paring the feature

vectors is that the number of feature vectors reported by two devices within the 18-second time window could be

different because of the CSI sampling rate offset. To remove the sampling rate offset, we apply nearest neighbour

interpolation to interpolate the feature vector sequence with lower sample rate, so we have the same number of

features vectors inside two sequences spanning the same length of period.
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Fig. 10. The architecture of our DAN based network, which updates the model by taking both labeled and unlabeled data as

input.

4.3.2 Multiple Overlapping Cells. We modify the voting scheme to handle multiple overlapping cells. Supposing

two mobile users share 𝑛𝑐 overlapping cells in their reported feature vectors, the voting results is given by:

P𝑚 =
𝑘∑
𝑡=1

(
𝑛𝑐∑
𝑖=1

𝑤𝑖𝑃𝑡,𝑖

)
, (10)

where 𝑃𝑡,𝑖 is the preliminary estimation results obtained from 𝑡-th feature vector of the 𝑖-th base station, and the

weight𝑤𝑖 is used to adjust the impact of 𝑖-th base station on the final voting results. Different base station have

different bandwidth and transmitting antennas, so feature vectors originated from different bandwidths contain

different amount information. Higher weight should be given to base station with larger bandwidth and more

antennas. In our experiments, we set𝑤𝑖 to 1 when the 𝑖-th base station has 20 MHz bandwidth and four antennas

in its array, and then decrease the value of𝑤𝑖 proportional to the bandwidth and array size when the 𝑖-th base

station adopts other configurations.

4.4 Continuous Model Updating

As the environment is highly dynamic, we need to continuously update our CNN based feature extractor after

deployment. Completely retraining the feature extractor requires frequently recollecting fresh training data with

ground truth and is thus unsustainable.

Instead of retraining, we propose to update our existing model using deep adaptation networks (DAN) [32].

Theoretically, the deep features gradually transition from general to specific along the neural network [32], i.e.,

features extracted by the first several hidden layers are general and the features get more task or data specific

when the layer gets deeper. Consequently, we apply DAN to freeze the first five hidden layers to extract general

features and update the weight of the rest of the network to adapt to new environment, as shown in Figure 10.

We know from Figure 10 that updating the network demands two inputs: the labeled and the unlabeled training

data. The label in our dataset is the proximity between two users, i.e., close contact or not, so we can only collect

labeled data by controlling the distance between users. When training the original network, we have collected

huge amount of labeled data and we will reuse them here, so that Caper only requires unlabeled data in operation,

once it is bootstrapped by the labeled data that we have already collected. The unlabeled data should be collected

from the new environment in which the updated network should work. Collecting unlabeled data imposes no

restrictions on the user behavior so we update the network with the data reported from all normal users from the
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new environment, requiring no dedicated data collection process. That also means that the data reported by one

user is not only used for close contact identification but also used for updating our network.

The data reported by a normal user is the features extracted by the original network, instead of the raw CSI

that we require to update the network. Directly asking the users to report raw CSI would results privacy concerns.

We observe that the original network and the updated network share the first five layer, so the intermediate

results output by the first five layer is enough for both extracting feature vectors and updating the network.

Therefore, we ask the user report such intermediate results instead of the final feature vector. By doing so, we

protects the user privacy by hiding the raw CSI. We only select portion of our user (with their consent) to report

intermediate results since such results are larger in data size comparing with feature vectors and thus incur larger

communication overhead.

Updating the network. The labeled data we collected in the initial stage and unlabeled data we collected from

the new environment results in different distributions in the features output by the fully connected layers at the

end of the network. DAN computes the discrepancy of these two distributions using a multi-kernel maximum

mean discrepancies (MK-MMD), and then add the discrepancy as a penalty at the loss function:

L𝐷𝐴𝑁 = L𝑓 + 𝜆 ·

𝑙2∑
ℓ=𝑙1

𝑀𝑚𝑘−𝑚𝑚𝑑
(
Qℓ
𝑙𝑏,Q

ℓ
𝑢𝑙𝑏

)
, (11)

where 𝜆 is the penalty weight, it controls how much the distribution discrepancy penalty influences the whole

loss, the 𝑙1 and 𝑙2 are the starting and final index of fully connected layers. Qℓ
𝑙𝑏
and Qℓ

𝑢𝑙𝑏
represent the feature

distribution at ℓ-th layer when feeding labeled and unlabeled data, respectively. The function𝑀𝑚𝑘−𝑚𝑚𝑑 computes

the discrepancy between two distributions, which is defined in [32]. By adding the discrepancy penalty term, our

model minimizes the contrastive loss, the AoA and TDoF estimation tasks prediction error, and the distribution

discrepancy simultaneously during training. Our experimental results in Section 7.5 show that CAPER achieves

an average accuracy of 91.38% in unseen environments by using the DAN for network updating.

4.5 Coverage Extension

Even though cellular networks has a pervasive coverage due to the ubiquitous cellular infrasturcture, there still

exists challenging indoor environments, such as the basements or rooms with thick concrete walls, where the

signal from cellular base stations are weak. To extend CAPER’s coverage to such challenging environment, we

propose to use Wi-Fi CSI as a complementary information source when the cellular CSI are not available or noisy.

We reuse the feature extractor we trained for 20 MHz cells to extract features from CSIs measured from 20 MHz

Wi-Fi channel. We note that, Wi-Fi has less subcarriers (50) in 20 MHz channel compared with cellular (1200),

because its subcarrier is much wider than cellular’s subcarrier [56]. To match input size required by CAPER’s

feature extractor, we perform interpolation [1] on WiFi CSI in frequency domain.

By default, CAPER relies on cellular CSI for contact tracing, if the total effective bandwidth W of all available

base stations is larger than a threshold. We define the total effective bandwidth as:

W =
𝑛𝑐𝑒𝑙𝑙∑
𝑖=1

𝐵𝑊𝑖 ×𝑀𝑖 , (12)

where 𝑛𝑐𝑒𝑙𝑙 is the number of detected cells, and 𝐵𝑊𝑖 and 𝑀𝑖 denote the bandwidth and number of antennas of

the 𝑖 th cell, respectively. When the effective bandwidth W falls below 30 MHz, CAPER starts to leverage Wi-Fi

CSI for contact tracing. By utilizing the signal heterogenity, we demonstrate in Section 7.4 that CAPER achieve

robust contact tracing performance across indoor and outdoor environments.
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5 SECURITY AND PRIVACY CONSIDERATIONS

It is of great importance for a contact tracing system to preserve user privacy, since both the close contact infor-

mation and location information are sensitive. In this section, we discuss the security and privacy considerations

of CAPER.

Securing the Data at Server. To protect the user privacy, CAPER anonymizes the username (which can be used

to identify a user), and cell information (which can be used to identify rough location of the user) by an authorized

case investigators [52]. The data server only receives the anonymized user name and cell information. We note

that the anonymization doesn’t interfere with the process of contact tracing at the server side. The authorized

case investigators de-anonymize the data to retrieve the user identity when and only it receives the information

about close contacts of a positive case identified by the server. The data transfer between the client, the server

and the authorized case investigators are encrypted using secure data transmission protocol, e.g. HTTPS.

Encrypting the Model. We adopt model encryption [50] and deploy encrypted model on client’s mobile phone,

so that the clients, including the malicious clients cannot access the model structure and weights. We also only

store the encrypted model on the server, so the attacker can only get the encrypted model even after compromising

the server.

5.1 Compromising the Server

In this section, we discuss how CAPER protect user’s privacy even when the attacker compromises CAPER’s

server and obtain all the data we stored in the server. As shown in Figure 4, the server stores feature vectors

reported by the users and the encrypted neural network model we trained.

Attack by CSI fingerprinting. One possible attack is via CSI fingerprinting. The attacker may collect the CSI at

all possible locations, extract the feature vectors using the compromised encrypted feature extractor, and build

the map between the physical location and the extracted feature vectors. According to the map, the attacker

can then localize the user from the compromised feature vectors reported by the user. CAPER is able to protect

users’ privacy against such attack, since the CSI value is affected not only by the location of the user but also

the surrounding environment, such as the walking human and the moving cars. The time-varying CSI make

the fingerprinting based attack infeasible. CAPER is, however, robust to such changes, since it relies on the

instantaneous CSI pairs measured at that specific time point when two user are close to each other to identify the

close contact.

Attack by neural network model inversion. Another possible attack when attacker compromises CAPER’s

server is model inversion attacks against neural network, i.e., inferring the inputs to the neural network model

(CSI), from the corresponding model outputs (compromised feature vectors). There are basically two types of

model inversion attack, white-box model inversion [17, 25, 33] and black-box model inversion [16, 25]. CAPER

prevents the white-box model inversion by model encryption, since white-box model inversion requires knowing

the structure and parameters of the model.

The black-box model inversion requires no prior knowledge of the structure or parameters of the neural

network model. Existing work [38, 53, 62] has shown that differential private model is robust to the black-box

model inversion attack. [18] proves that neural network models trained on wireless signals is differential private

since the wireless signals data inherently contains additive Gaussian noise. Our feature extractor trained from

wireless CSI data, which inherently contains additive Gaussian noise, preserves differential privacy, and thus is

also robust to the black-box model inversion attack.
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6 IMPLEMENTATION

Mobile client side. Accessing physical layer CSI data on smartphones requires customization of the cellular

firmware. As a proof of concept, we implement the CRS decoding and CSI extraction parts on USRP X310 and

B210 radios by modifying from srsLTE [19], which is an open-source LTE library. We use two laptops, each

connecting with two USRPs, to emulate two mobile clients with two radio chains. Each mobile client extracts

the feature vectors from the measured CSI, tags the feature vector with timestamps and subframe index, and at

last uploads the feature vectors together with the tag to the server. The server aligns the feature vectors from

multiple users according to their timestamp and subframe index at millisecond granularity.

Server side. We use PyTorch [41] to train our feature vector on a server, where the CPU is Intel i7-9700, and the

GPU is Geforce RTX 2060. We set the initial learning rate to 0.01, and decrease the learning rate by a factor of 0.7

every 5 epochs to stabilize the training. We set the hyperparameters𝑚 = 2, 𝛽𝐴 = 0.1, 𝛽𝑇 = 0.1, and 𝜆 = 0.2 during
the training. The server distributes the CNN based feature extractor to mobile clients, after finishing the training.

To identify close contacts, the server sets the voting time span to 18s and the prediction threshold 𝐷𝑡ℎ𝑟𝑒ℎ to 0.9.

We update the model everyday, with fresh user reported data.

7 EVALUATION

In this section, we evaluate the performance of CAPER. We first introduce our evaluation methodology, and then

give the end-to-end performance under diverse physical layer configurations. After the end-to-end evaluation,

we compare CAPER with the widely used Bluetooth Low Energy (BLE) based approach [11, 20, 46] (Section 4.5).

We then present CAPER’s generalization ability across time and on different locations, followed by a micro-

benchmark evaluating the accuracy gains arising from each component of CAPER. We also demonstrate the

resource usage of CAPER on mobile phones at the end of this section.

Fig. 11. The route of our outdoor data collection. In total, we cover a 2.6 km2 area.

7.1 Methodology

Our system is intrinsically estimating proximity by comparing data pairs. A comprehensive and diverse dataset of

CSI pairs subsume the data required to a real system. We collect CSI pairs by moving two mobile clients together,

where each client comprises two USRPs. To get the ground truth of proximity between clients, we fix the distance

between these two mobile clients to 0.25 meter, 0.75 meter, 1.5 meters, 2.25 meters, 3 meters, and larger than

3 meters. The first three distances are smaller than six feet and thus labeled as "close contact". The later three

distances are labeled as "not close contact". We also include cases, where two radios are 1m away from each other

but have a wall in between, into our dataset. Since in such cases, the two user don’t have close contacts in the
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context of Covid-19 contact tracing, we label them as "not close contact". During the data collection, we shuffle

the combination of USRPs that each client is consisted of to emulate mobile clients with different RF hardware.

The WiFi CSI are measured using USRPs at the same indoor locations of the cellular CSI experiments.

For indoor cases, we collect our data at 22 different locations of four buildings, covering both office environment

and home environment, over a period of 16 days, covering both daytime when there are human moving around

and idle late night. At each location, we move two mobile clients randomly inside an area that covers around

1,600 square feet. We note that the data collected from these indoor locations do not enjoy the line of sight with

the cell towers. In total we collect data from 6 nearby cell towers owned by three mobile network operators,

Verizon, AT&T and T-mobile, whose operating frequencies of the cells range from 1805MHz up to 2355MHz.

As for outdoor experiments, we collect our data by moving our clients over a 2.6 km2 area on campus, over a

period of 6 days, as shown in Figure 11. These data are collected from 3 cell towers, whose operating frequencies

of the cells range from 1940MHz up to 2355MHz. The distance from our clients to the cell towers ranges from 100

meters up to 800 meters. Since our data collection points distribute over a large area, our data includes diverse

signal propagation scenarios, include both LoS and NLoS. We also observe diverse obstacles between the base

sation and the client, including buildings, cars and trees. This outdoor dataset also covers data with different

levels of crowd densities. We perform outdoor data collection at both busy hours where there are moving vehicles

and human beings around, and late night where there are almost no other people around.

The cell towers we measured cover all antenna configurations, i.e., one, two and four transmitting antennas in

the array. As for bandwidth, we only observe 5MHz, 10MHz and 20MHz cells in practice, although the 3GPP

specification also outlines 1.4MHz, 3MHz, 15MHz as supported bandwidth. Hence, in our experiments, we only

show system results under the three observed bandwidths. At the client side, our mobile client has two antennas in

its array. In total, we collect 6,212,008 CSI pairs. We train our feature extractor using the indoor data we collected

from the first six days and outdoor data from the first four days, and then evaluate the system performance using

indoor data collected from the later ten days and outdoor data collected from the later two days.

To reduce the data collection overhead, we emulate the users with different DRX cycles and CSI sampling time

misalignments from densely sampled CSI. Specifically, we first collect the CSI at a high frequency, i.e., every 10

subframes, and then downsample the CSI to create user traces that have varying DRX cycles, i.e., 0.32 second,

0.64 second and 1.28 seconds, and CSI sampling time misalignments, i.e., from 20 milliseconds to 640 milliseconds

with a 20 milliseconds interval.

7.2 Close Contacts Identification Accuracy

In this section, we evaluate CAPER’s accuracy in identifying close contacts. We begin with the the end-to-end

accuracy, including results in both outdoor and indoor scenario and both busy hour and idle hours, followed by

the evaluation of the impact of various physical layer configurations.

Methodology.We use CAPER’s feature extractor to extract a pair of feature vectors from each collected CSI pair,

and run CAPER’s close contact identifier by taking the extracted feature vector pair as input to determine whether

the CSI pair is collected from two devices that have close contacts with each other. We compare the identification

results with the ground truth to calculate the accuracy. Except the overall accuracy, we also calculate the true

positive (TP), i.e., the correct close contact discovery rate, the true negative (TN), i.e., the correct far contact

identification rate, the false negative (FN), i.e., the close contact missing rate, and the false positive (FP), i.e., the

false alarm rate.

7.2.1 Identification Accuracy. We run CAPER on all testing CSI pairs and calculate the accuracy. We give the

confusion matrix of CAPER’s identification accuracy in Table 1. from which we see that the overall accuracy of

CAPER, is 𝑇𝑃 +𝑇𝑁 = 93.39%. In addition, in the context of COVID-19 contact tracing, missing close contacts is a
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Table 1. The confusion matrix result of CAPER

Ground truth Close Far

Predictions
Close TP = 49.12% FP = 5.40%

Far FN = 1.21% TN = 44.27%

90%

Verizon AT&T T-mobile
Network Operators

0

25

50

75

100

A
cc

ur
ac

y 
(%

)

Fig. 12. Overall accuracy of CAPER working with data col-

lected from different network service providers.
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Fig. 13. Overall accuracy of CAPER on data collected from

outdoor or indoor locations and in busy or idle hours.

much more severe problem than giving false alarms. From Table 1, we see that even though CAPER gives false

alarms to 5.4% of CSI pairs, it only misses 1.21% of close contacts in the dataset.

We provide CAPER’s identification accuracy with CSI pairs measured from cell towers of different network

operators in Figure 12, where the error bar represents the standard deviation of accuracy of different cells towers

from the same operator. We observe that CAPER achieves a high average accuracy working with data collected

from different network operators. Furthermore, the small deviation indicates that CAPER is stable across different

cells from three network operators.

To show how CAPER’s performance varies depending on different locations and time, we give the overall

accuracy of CAPER on data collected from both outdoor and indoor locations and in busy or idle hours in

Figure 13, where the legend idle means the accuracy on data collected at late night. We note that the cell towers

we measured in the outdoor experiment are all with 20MHz bandwidth. Hence, to perform a fair comparison

between outdoor and indoor performance, in Figure 13 we only show the indoor performance with CSI pairs

collected from 20MHz cell towers. We do a detailed discussion on the impact of diverse cell tower physical layer

configurations in Section 7.2.2. We draw the conclusion from this figure that CAPER achieves a higher accuracy in

outdoor locations, which is due to the better channel quality in outdoors. We also observe that CAPER performs

better in late night than in busy hour. We attribute this higher accuracy to less interference from other LTE

clients at late night. The highest achieved accuracy is 96.83% at outdoor locations and at late night.

7.2.2 Impact of Diverse Physical Layer Configurations. In this section, we evaluate the impact of diverse physical

layer configurations on the end-to-end accuracy. The configurations we investigate include channel bandwidth,

array size of the cell tower, the number of overlapping cells and the DRX cycle. We note that, two mobile devices

may be configured with different DRX cycle when measuring the CSI. For demonstration purpose, we examine

the combination of minimum and maximum DRX cycle, in this section. Specifically, when the device is in RRC

connected mode, the DRX cycle can be treated as zero. When the device is in RRC idle mode, the maximum DRX
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Fig. 14. CAPER’s performance under diverse physical layer configurations. We examine the impact of bandwidth in (a) and

(d); the impact of array size in (b) and (e); and the impact of the number of overlapping cells in (c) and (f).

cycle is 1.28 seconds. In total, we have three combinations with two mobile devices, i.e., idle-idle, idle-connected

and connected-connected.

Impact of bandwidth. To evaluate the impact of bandwidth on the identification accuracy, we fix the number of

overlapping cells to one and the antenna number in the array of the overlapping cell to one and two, and plot

the accuracy of close contact identification in Figure 14(d) and 14(a). We can observe from these two figures

that CAPER achieves higher accuracy when the bandwidth becomes larger and the highest achieved accuracy is

93.24% with 20 MHz bandwidth and two antennas. Even in the worst case, where two devices are in idle mode,

i.e., each CSI sample are 1.28 seconds from each other, and share one overlapping cell that has 5 MHz bandwidth

and one antenna in its array, CAPER can still achieve an accuracy of 79.19%.

Impact of array size. To evaluate the impact of array size of the cell tower on the identification accuracy, we fix

the number of overlapping cells to one and the bandwidth to 5 MHz and 20 MHz, and plot the accuracy of close

contact identification in Figure 14(e) and 14(b). We see that increasing the array size significantly improve the

accuracy. When the two devices are in connected mode with a configuration of 20MHz, one overlapping cell,

four antennas, CAPER can achieve a accuracy of 97.67% on our testing dataset.

Impact of overlapping cells. To evaluate the impact of the number of overlapping cells on the identification

accuracy, we fix the bandwidth to 5 MHz and 20 MHz, and array size to one antenna, and plot the accuracy of

close contact identification in Figure 14(f) and 14(c). We note that, since each mobile user in our implementation

has only two radio chains (two USRPs due to limited available hardware), so we emulate the four cell cases by
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concatenating two traces. We observe higher accuracy when two devices have more overlapping cells. Specifically,

the highest accuracy is 97.12% when two device are in connected mode and share four cells.

Impact of DRX cycle. From all six figures, we could see that smaller DRX cycles significantly improve the

accuracy when the bandwidth, array size and the number of overlapping cells is small. For example, the accuracy

improves from 79.19% to 88.84% when two users, which share a cell with 5 MHz and one antenna, changes from

idle mode to connected mode. The accuracy improvement becomes marginal with increasing bandwidth, array

size and number of overlapping cells, and thus more information from CSI.
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Fig. 15. CAPER’s close contact identification accuracy with
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Fig. 16. CAPER’s close contact identification accuracy

across time, with data collected from four service providers.

7.2.3 Impact of Time Misalignment. As we mention in Section 4.2.3 that two devices in idle mode may wake up

and measure CSI at misaligned subframes. We plot the accuracy with CSI pairs sampled with a time misalignment

from -0.64 seconds up to 0.64 seconds, in Figure 15. In this figure, the testing samples contain configurations of

one to four transmitting antennas and one to four overlapping cells. From this figure we see that the accuracy is

high for three different bandwidths. When we zoom in the curves in the inner figure, we can see a slight drop of

the accuracy when time misalignment increases. When the time misalignment is the maximum 0.64 seconds,

CAPER can still achieve an accuracy of 90.71% with 20MHz bandwidth, and an accuracy of 87.80% and 86.78%
with 10MHz and 5MHz bandwidth.
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Fig. 17. The distribution of accuracy of

CAPERLTE and CAPER across 40 loca-

tions in the basement floor.
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Fig. 18. The distribution of accuracy of CAPERWi−Fi and CAPERLTE across 25

indoor locations.
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7.3 Coverage Extension Using Wi-Fi

In this section, we verify the coverage extension of leveraging Wi-Fi as the complementary data source. We

conduct experiments in the basement floor of a campus building, where cellular signal becomes weak but the

campus Wi-Fi still covers the whole floor. We perform close contact identification at 40 locations using CAPER

and record the accuracy. We then repeat the experiments but disable the functionality of leveraging Wi-Fi CSI

as complementary data source when cellular signal is too weak. We denote the version of CAPER that merely

uses cellular signal as CAPERLTE. We plot the CDF of the accuracy across locations in Figure 17, from which

we could see that the average accuracy of CAPER and CAPERLTE are 93.47% and 90.49%, respectively. In the

challenging basement floor, the signal of many cellular base stations, especially those with high central frequency,

cannot penetrate the wall, resulting in less available high quality cells for CAPERLTE. CAPER outperforms in

such challenging environment by leveraging the strong Wi-Fi signal.

To further evaluate the performance CAPER using different signals, we implement another version of CAPER

that only useWi-Fi CSI as input, which we denote as CAPERWi−Fi. We pick 22 indoor locations that simultaneously

have two Wi-Fi AP (20MHz channel) and also two 20 MHz cellular cells, and test the performance of both

CAPERWi−Fi and CAPERLTE at each location.We plot the CDF of accuracy across locations in Figure 18. Specifically,

in Figure 18(a), we only use one AP and one cell for contact tracing, while in Figure 18(b) we use both APs and

both cells. We see from Figure 18(a) and Figure 18(b) that CAPERWi−Fi has an overall accuracy of 89.76%, which is

comparable to CAPERLTE’s accuracy 90.75%. Even though LTE has a well-organized frame structure, which leads

to uniformly distributed and finer-grained LTE CSI data than Wi-Fi CSI, there are still some locations where

CAPERWi−Fi performs better than CAPERLTE. We attribute this to the weaker signal strength of LTE in some

indoor scenarios. Such phenomenon is alleviated with more observed cellular cells, just as shown in Figure 18(b).

7.4 Comparison with BLE Based Approach.

In this section, we compare CAPER’s performance with BLE based approach. Many BLE based approaches [11,

20, 46] have been proposed by the industry and the research community. We compare with CovidSafe since its

source code is open-sourced[10].

7.4.1 Methodology. BLE based approach requires two BLE devices to transmit signal between each other and

identifies close contact by checking the RSSI of received signal— RSSI higher than a threshold indicating close

contact. We therefore let two cellphones, one iPhone X and one Xiaomi MI 9, transmit signal at different distances,

varying from 0.25 meter to larger than 3 meters, and then record the RSSI. For each distance, we repeat the

experiment multiple times at 360 different nearby locations. To provide a head-to-head comparison between

CAPER and CovidSafe, during our experiments, we attach these two cellphones to two USRPs and simultaneously

collect the cellular CSI. We denote the data collection at six different distances, each repeating at 360 different

locations, as one group of experiments.We conduct 42 groups of experiments at 22 indoor locations and 20 outdoor

locations.

When comparing with the BLE based approach, it is important to have a comprehensive understand of the

results. Hence, for each group of experiments, we evaluate the overall accuracy, precision, recall and F1 score

of the contact tracing, where precision and recall capture the impact of false positives and false negatives,

respectively. Specifically, we calculate the precision as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 and recall as: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Based

on the calculated precision and recall, we calculate the F1 score as:

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(13)
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7.4.2 Results. We plot the CDF of CovidSafe’s accuracy, precision, recall and F1 score across 22 indoor and 20

outdoor locations in Figure 19 and 20, respectively. Each point on the CDF curve represents the results of one

group of experiments at a specific location. The blue markers depicts the corresponding results achieved by

CAPER at the same location. We see from Figure 19 and 20 that CAPER outperforms CovidSafe at 37 out of 42

locations we tested, demonstrating CAPER’s robustness across diverse environments. The average accuracy of

CovidSafe is only 78.43%. CAPER, however, achieves an accuracy of 91.84%, a 13.41% improvement over CovidSafe.

By comparing Figure 19(b) and 19(c), we can see that both CAPER and BLE approach achieve a higher accuracy

at outdoor locations than at indoor locations, due to less multipath effects and less interference in outdoor

scenarios. Precision and recall are affected by false alarm rate and close contact missing rate, respectively. We

notice that CAPER has a pretty high recall value (nearly 1) at most locations. A high recall value indicates that

CAPER attaches more importance to lowering missing close contacts than lowering false alarms, which aligns

with the the goal of COVID-19 contact tracing. The BLE approach, on the other hand, has a low average recall

value of 0.70. The precision of BLE approach is 0.81, which is lower than CAPER’s precision 0.90. F1 score is

often used when the FN and FP are crucial, while accuracy is used when the TP and TN are more important.

In Figure 19(d), CAPER has a higher F1 score than BLE at most of the locations, which means CAPER has less

incorrectly classified cases than BLE approach.
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Fig. 19. The distribution of accuracy (a), precision (b), recall (c), and F1 score (d), of CovidSafe, CAPER-WiFi, and CAPER-LTE,

across 22 indoor locations.
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Fig. 20. The distribution of accuracy (a), precision (b), recall (c), and F1 score (d), of CovidSafe, and CAPER-LTE, across 20

outdoor locations.
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7.5 Generalizability

We evaluate the performance of CAPER’s when adapting to new environments using the DAN in this subsection.

We first present the evaluation of CAPER’s performance at unseen locations. We then investigate whether CAPER

is able to handle environment dynamics.

7.5.1 Generalizability to Unseen Locations. We divide the data we collected from indoor locations into two

groups: one group includes data from 12 randomly selected locations and another group includes data from the

rest ten locations. We train our feature extractor using the data collected from the 12 locations in the first group

and test the close contact identification accuracy with the data from the rest ten locations, which are grouped

into four categories, corridor, lobby, classroom, and Lab.
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Fig. 21. Overall accuracy of CAPER working with data collected from four unseen locations.

We plot the close contact identification accuracy in Figure 21. We conclude that CAPER generalizes well on

data collected from unseen locations, with a close contact identification accuracy ranging from 89.90% to 95.54%
over the four kinds of unseen locations. We also note that the accuracy variance is attributed to the physical

layer configurations of the associated base stations at those four locations. For example, in one classroom, we

observe three base stations, one with 5 MHz and two with 10 MHz channel bandwidth, while in one lobby, we

detect another three base stations, one with 20 MHz and two with 10 MHz channel bandwidth.

7.5.2 Adaption to Environmental Dynamics. We train our model using data we collected in the first four days of

a 14-day data set. We then continuously update the trained feature extractor using the algorithm we introduce

in Section 4.4 to adapt our model in the later ten days. We evaluate CAPER’s adaptation capability over time

by testing our adapted feature extractor on unseen data from the later ten days and plot the close contact

identification accuracy in Figure 16. In this figure, the data point at day zero shows the close contact identification

accuracy on data samples collected from the first six days, and then the data points at day two to day 10 shows

the adapted model’s accuracy on the following ten days. From this figure we observe that, CAPER maintains a

high accuracy over the 10-day period by applying our continuous model updating algorithm. The mean accuracy

over ten days is 92.79% and the accuracy at the tenth day is 92.35% .

7.6 Micro-benchmark

In this section, we quantify the impact of different system components on the accuracy of close contact identifi-

cation, specifically the impact of having a MTAN module, and the impact of our proposed CSI pre-processing

technique.
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Fig. 22. Micro-benchmarks comparing Siamese+MTAN with only Siamese. The ROC curve of two models trained using

Siamese plus MTAN, and purely Siamese is plotted in (a). The identification accuracy on CSI measured from devices in idle

and busy model are given in (b) and (c). The accuracy with varying time span is in (d).
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Fig. 23. Micro-benchmarks comparing different pre-processedCSI. The ROC curve ofmodels is plotted in (a). The identification

accuracy for idle and busy devices are given in (b) and (c). The accuracy with varying time span is in (d).

7.6.1 Impact of Siamese Network and MTAN. We demonstrate that our MTAN based training network solves the

overfitting problem introduced by training using purely Siamese network. We train multiple mode by varying

the threshold 𝐷𝑡ℎ𝑟𝑒ℎ in Eqn. 8, and plot the ROC curve [55] in Figure 22(a), where the x-axis is false positive rate

(FPR), and y-axis is true positive rate (TPR):

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁
,𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

A curve resides in the upper left corner means the model having a strong capability of identifying close contact,

and the dashed diagonal line means random guess. From Figure 22(a), we see that the models trained using MTAN

based architecture performs better, since these models are able to extract features that are related to the physical

locations of the mobile devices and thus has stronger capability of identifying close contacts.

To further quantify the improvement, we test the identification accuracy of two models trained using Siamese

and MTAN network on CSI pairs with different cell tower configurations, specifically the data are measured

from cells that have one antenna in its array but have varying channel bandwidth, including 5MHz, 10MHz

and 20MHz. We plot the close contact accuracy obtained from CSI pairs measured when the two devices are in

connected and idle mode, in Figure 22(b) and 22(c), respectively. We see that MTAN based network improves the

accuracy by 18.75% and 11.54%, when the cell have 5 MHz bandwidth and the user is in connected mode and idle

mode, respectively. Such an improvement decreases with increasing bandwidth, since wider bandwidth provides

richer information for classification which boosts the base line accuracy. We also plot the accuracy with varying

voting time span in Figure 22(d), from which we could clearly see an accuracy improvement when the model is

trained with both MTAN and Siamese network.
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7.6.2 Impact of the CSI Pre-processing. We investigate the contribution of our CSI pre-processing to the final

accuracy. Specifically, we train five models with five differently pre-processed CSI, including the CSI amplitude

plus polar phase, amplitude plus raw phase, purely amplitude, purely polar phase, and purely raw phase. We test

the accuracy of these models and plot the ROC curve in Figure 23(a), from which we could see that the model

trained using CSI amplitude plus our polar phase resides at the top left corner, meaning the best performance. We

also quantify the improvement in Figure 23(b), 23(c) and 23(d), from which we see a clear accuracy improvement

from the polar phase we input to the neural network.

Table 2. System resources usage of CAPER on mobile phones.

CPU Run time energy Memory Storage Model size

OnePlus 8 20.47% 12.1ms 26.54mAh 200.0MB 65MB 2.75MB

Xiaomi 9 17.92% 14.4ms 34.02mAh 238.5MB 59MB 2.75MB

7.7 Resources Usage

In this section, we investigate the computational overhead of our neural network based feature extractor and

verifies its feasibility when deployed on commercial mobile phones. We implement CAPER’s neural network

based feature extractor on mobile phone using Pytorch Mobile [42]3.

We evaluate the system overhead of CAPER’s feature extractor by measuring the CPU usage, memory usage,

power consumption and required storage of two mobile phones, e.g., one OnePlus 8 released in 2020 and one

Xiaomi 9 released in 2019, when running the extractor. Specifically, we measure the CPU and memory usage

using Android Debug Bridge [3], and the energy consumption using the Accubattery [14]. We plot the results in

Table 2. We see that CAPER requires 200.0 MB and 238.5MB RAM which is only 1.7% and 4.5% of the total RAM

of OnePlus 8 and Xiaomi 9, respectively. When running, CAPER occupies 20.47% and 17.92% of CPU on OnePlus

8 and Xiaomi 9, respectively. It finishes the feature extraction within 12.1 microseconds and 14.4ms for 95% of the

cases on these two phones. We could also see that the final model size is only 2.75MB. The total required storage

of our app is around 60MB for both phones. Table 2 also gives the average energy consumption. We run our

CAPER for ten minutes on the tested cellphones, and the average consumption on the two phones are 26.54mAh

and 34.02mAh, respectively. For OnePlus 8, its 4300mAh battery can support CAPER for 27 hours if only CAPER

drains its energy.

8 CONCLUSION

We propose a cellular-assisted, deep learning based contact tracing system for containing the spread of COVID-19.

We leverage a deep learning based feature extractor to map CSI into one point inside a high-dimensional feature

space, which preserves user privacy and achieves high accuracy in identifying close contacts. CSI data used in

CAPER provide much richer information than RSSI, including location information, and surrounding environment,

making it a better input for proximity estimation. Experimental results prove our argument, where CAPER

achieves an overall accuracy of 93.39% in identifying close contacts, which is 14.96% higher than the accuracy of

the BLE based approach.

3Currently, we are able to deploy the feature extractor on mobile phones, but we are not able to extract the CSI from the cellular modem

in real-time, since accessing the physical-layer CSI requires modification of the firmware of cellular modem, which is proprietary to the

manufacturer, like Qualcomm.
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