sin(ωx) Can Approximate Almost Every Finite Set of Samples
Author(s): Harman, Gilbert H; Kulkarni, Sanjeev R; Narayanan, Hariharan
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1348gg4p
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Harman, Gilbert H | - |
dc.contributor.author | Kulkarni, Sanjeev R | - |
dc.contributor.author | Narayanan, Hariharan | - |
dc.date.accessioned | 2023-12-24T18:54:55Z | - |
dc.date.available | 2023-12-24T18:54:55Z | - |
dc.date.issued | 2015-06-19 | en_US |
dc.identifier.citation | Harman, Gilbert H, Kulkarni, Sanjeev R, Narayanan, Hariharan. (2015). $$\sin (\omega x)$$ sin ( ω x ) Can Approximate Almost Every Finite Set of Samples. Constructive Approximation, 42 (2), 303 - 311. doi:10.1007/s00365-015-9296-0 | en_US |
dc.identifier.issn | 0176-4276 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1348gg4p | - |
dc.description.abstract | Consider a set of points (x1, y1), . . . , (xn, yn) with distinct 0 ≤ xi ≤ 1 and with −1 < yi < 1. The question of whether the function y = sin(ωx) can approximate these points arbitrarily closely for a suitable choice of ω is considered. It is shown that such approximation is possible if and only if the set {x1,..., xn} is linearly independent over the rationals. Furthermore, a constructive sufficient condition for such approximation is provided. The results provide a sort of counterpoint to the classical sampling theorem for bandlimited signals. They also provide a stronger statement than the well-known result that the collection of functions {sin(ωx) : ω < ∞} has infinite pseudo-dimension. | en_US |
dc.format.extent | 303 - 311 | en_US |
dc.language | en | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Constructive Approximation | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | sin(ωx) Can Approximate Almost Every Finite Set of Samples | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00365-015-9296-0 | - |
dc.identifier.eissn | 1432-0940 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
sine_approx130508.pdf | 82.31 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.