$\sin (\omega x)$ Can Approximate Almost Every Finite Set of Samples*

Gilbert H. Harman, Sanjeev R. Kulkarni, Hariharan Narayanan ${ }^{\dagger}$

Abstract

Consider a set of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with distinct $0 \leq x_{i} \leq 1$ and with $-1<y_{i}<1$. The question of whether the function $y=\sin (\omega x)$ can approximate these points arbitrarily closely for a suitable choice of ω is considered. It is shown that such approximation is possible iff the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent over the rationals. Furthermore, a constructive sufficient condition for such approximation is provided. The results provide a sort of counterpoint to the classical sampling theorem for bandlimited signals. They also provide a stronger statement than the well known result that the collection of functions $\{\sin (\omega x): \omega<\infty\}$ has infinite pseudo dimension.

Index Terms: sinusoids, approximation, Diophantine approximation, VC dimension, pseudo dimension, sampling theorem

1 Introduction

Suppose x_{1}, \ldots, x_{n} are distinct with $0 \leq x_{i} \leq 1$ for $i=1, \ldots, n$ and that $-1<y_{i}<1$ for $i=1, \ldots, n$. We are interested in the question of when a function of the form

$$
\begin{equation*}
y=\sin (\omega x) \tag{1}
\end{equation*}
$$

[^0]can approximate the set of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ arbitrarily closely for a suitable choice of ω. That is, we address the question of whether for every $\epsilon>0$ there exists ω such that
$$
\left|\sin \left(\omega x_{i}\right)-y_{i}\right|<\epsilon \text { for } i=1, \ldots, n
$$

In Section 2, we obtain a necessary and sufficient conditions on x_{1}, \ldots, x_{n} such that that for any y_{1}, \ldots, y_{n} with $-1<y_{i}<1$, the points $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ can be approximated. We call such x_{1}, \ldots, x_{n} approximable, and we show that x_{1}, \ldots, x_{n} are approximable if and only if the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent over the rationals. This characterization follows straightforwardly from results in Diophantine analysis.

In Section 3, we provide a different sufficient condition on the x_{i} (which we call mutually exhaustive) that guarantees approximability for any y_{i}. Although this condition is not necessary, it gives a constructive way to select a suitable ω for a desired level of approximation in terms of the binary expansions of the x_{i}. Moreover, we show that if the x_{i} are chosen randomly (i.i.d. uniform) then the x_{i} will be mutually exhaustive almost surely.

The classical Shannon sampling theorem, states that a bandlimited signal can be uniquely reconstructed by samples taken at a rate greater than twice the bandwidth of the signal. While rather different than the sampling theorem in a number of ways, the results here provide a sort of rough counterpoint. In the sampling theorem, the reconstructed signal fits the samples exactly, but utilizes a spectrum of sinusoids up to the bandlimit under consideration. In contrast, the results here fit the samples only approximately (though to whatever fidelity desired), but utilize only a single sinusoid, albeit of sufficiently high frequency.

Our results are also related to a result from learning theory and statistical pattern recognition. It's known that the collection of sinusoids of the form in Equation (1) have subgraphs with infinite Vapnik-Chervonenkis (VC) dimension. Alternatively, this class has infinite pseudo-dimension. These results imply the graphs of the collection of sinusoids lie above and/or below some collection of points $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ in all possible combinations for arbitrarily large n. On the other hand, our result implies a similar statement but for every choice of y_{i} as long as the x_{i} satisfy appropriate conditions.

2 A Necessary and Sufficient Condition from Diophantine Approximation

A collection of real numbers $\alpha_{1}, \ldots, \alpha_{n}$ is said to be linearly dependent over the rationals if there exist rational numbers q_{1}, \ldots, q_{n} such that

$$
q_{1} \alpha_{1}+\cdots+q_{n} \alpha_{n}=0
$$

If there are no such rational q_{1}, \ldots, q_{n} then $\alpha_{1}, \ldots, \alpha_{n}$ are said to be linearly independent over the rationals.

Given a set of real numbers x_{1}, \ldots, x_{n} and an integer k, consider the point $\bar{x}_{k} \in[0,1]^{n}$ defined by

$$
\bar{x}_{k}=\left(\left\{k x_{1}\right\}, \ldots,\left\{k x_{n}\right\}\right)
$$

where $\{u\}$ denotes the fractional part of u. A well-known result in Diophantine approximation states that the collection of numbers $\bar{x}_{1}, \bar{x}_{2}, \ldots$ is dense in $[0,1]^{n}$ if and only if $\left\{x_{1}, \ldots, x_{n}\right\}$ are linearly independent over the rationals. This is a form of Kronecker's theorem (see, for example, Chapter 23 of [2]).

This result immediately provides a sufficient condition for $\left\{x_{1}, \ldots, x_{n}\right\}$ to be approximable as can be seen in Theorem 1 below. Roughly, if $\left\{x_{1}, \ldots, x_{n}\right\}$ are linearly independent over the rationals then the fractional parts of $\left(\omega x_{1}, \ldots, \omega x_{n}\right)$ can be made as close to some specified $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ as desired so that $\left(\sin \left(\omega x_{1}\right), \ldots, \sin \left(\omega x_{n}\right)\right)$ can be made as close to $\left(y_{1}, \ldots, y_{n}\right)$ as desired.

Theorem $1 A$ set of distinct points x_{1}, \ldots, x_{n} are approximable iff $\left\{x_{1}, \ldots, x_{n}\right\}$ are linearly independent over the rationals.

Proof:

Suppose $\left\{x_{1}, \ldots, x_{n}\right\}$ are linearly independent over the rationals. Consider any y_{1}, \ldots, y_{n} with $-1<y_{i}<1$ and consider any $\epsilon>0$. We need to show that there exists ω such that $\left|\sin \left(\omega x_{i}\right)-y_{i}\right|<\epsilon$ for $i=1, \ldots, n$.

Let α_{i} be such that $\sin \left(\alpha_{i}\right)=y_{i}$, and let δ be such that $|\sin (\beta)-\sin (\alpha)|<\epsilon$ whenever $|\beta-\alpha|<\delta$. Given a real number θ, let $\langle\theta\rangle$ be defined as $2 \pi\left(\frac{\theta}{2 \pi}-\left\lfloor\frac{\theta}{2 \pi}\right\rfloor\right)$. By Kronecker's theorem, there exists ω such that $\left|\left\langle\omega x_{i}\right\rangle-\alpha_{i}\right|<\delta$ for $i=1, \ldots, n$. For this ω,

$$
\left|\sin \left(\omega x_{i}\right)-y_{i}\right|=\left|\sin \left(\omega x_{i}\right)-\sin \left(\alpha_{i}\right)\right|
$$

$$
\begin{aligned}
& =\left|\sin \left(\left\langle\omega x_{i}\right\rangle\right)-\sin \left(\alpha_{i}\right)\right| \\
& <\epsilon
\end{aligned}
$$

For the converse, suppose that $\left\{x_{1}, \ldots, x_{n}\right\}$ are linearly dependent over the rationals. Then there exist integers k_{i} such that

$$
k_{1} x_{1}+\cdots+k_{n} x_{n}=0
$$

Let the linear subspace $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid k_{1} x_{1}+\cdots+k_{n} x_{n}=0\right\}$ be denoted Λ.
Let T^{n} denote the n dimensional torus $\left\{\left(z_{1}, \ldots, z_{n}\right)\left|z_{i} \in C,\left|z_{i}\right|=1\right\}\right.$. Let

$$
\phi:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\exp \left(2 \pi i x_{1}\right), \ldots, \exp \left(2 \pi i x_{n}\right)\right)
$$

map \mathcal{R}^{n} to T^{n}. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of \mathcal{R}^{n}.
Let the vector $\left(\frac{k_{1}}{\sqrt{\sum_{i} k_{i}^{2}}}, \ldots, \frac{k_{n}}{\sqrt{\sum_{i} k_{i}^{2}}}\right)$ be denoted v^{\perp}. Let

$$
\begin{equation*}
\delta<\left(\prod_{i=1}^{n-1} \sqrt{k_{i}^{2}+k_{n}^{2}}\right)^{-1} 2^{-1}(2 \pi)^{-n} \tag{2}
\end{equation*}
$$

We denote by $\Lambda+v^{\perp}[-\delta, \delta]$, the set of points $x=\left(x_{1}, \ldots, x_{n}\right)$ whose Euclidean distance to the subspace Λ is less or equal to δ.

We see that Λ has a basis consisting of $\left\{v_{1}, \ldots, v_{n}\right\}$, where $v_{i}:=-k_{n} e_{i}+k_{i} e_{n}$. These basis vectors are integral vectors, therefore

$$
\begin{equation*}
\forall x, \exists i \in\{1, \ldots, n\}, \phi\left(x+v_{i}\right)=\phi(x) \tag{3}
\end{equation*}
$$

Let P denote the parallelopiped

$$
\left\{\sum_{i=1}^{n} \lambda_{i} v_{i} \mid\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in[0,1]^{n}\right\}
$$

Let $P+v^{\perp}[-\delta, \delta]$ denote the parallelepiped

$$
\left\{\lambda_{0} v^{\perp}+x \mid \lambda_{0} \in[-\delta, \delta], x \in P\right\}
$$

Then, by (3), we have

$$
\begin{equation*}
\phi\left(P+v^{\perp}[-\delta, \delta]\right)=\phi\left(\Lambda+v^{\perp}[-\delta, \delta]\right) \tag{4}
\end{equation*}
$$

as sets.
Let

$$
\psi: T^{n} \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^{n}
$$

map the point $\left(\exp \left(i \theta_{1}\right), \ldots, \exp \left(i \theta_{n}\right)\right)$ to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where the

$$
\alpha_{i} \in[-\pi / 2, \pi / 2]
$$

are given by $\sin ^{-1}\left(\sin \left(\theta_{i}\right)\right)=\alpha_{i}$.
By (4),

$$
\begin{equation*}
\psi\left(\phi\left(P+v^{\perp}[-\delta, \delta]\right)\right)=\psi\left(\phi\left(\Lambda+v^{\perp}[-\delta, \delta]\right)\right) \tag{5}
\end{equation*}
$$

Denoting the path-metric by d, we see that $d(\psi(x), \psi(y)) \leq d(x, y)$ for any $x, y \in T$. So the volume of $\psi\left(\phi\left(P+v^{\perp}[-\delta, \delta]\right)\right)$ is less or equal to the volume of $\phi\left(P+v^{\perp}[-\delta, \delta]\right)$, which (by our choice of δ) is less than or equal to 1 , and hence less or equal to $(\pi / 3)^{n}$. The volume of $[-\pi / 6, \pi / 6]^{n}$ is $(\pi / 3)^{n}$, therefore there must be some point $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]^{n}$ that does not belong to $\psi\left(\phi\left(P+v^{\perp}[-\delta, \delta]\right)\right)$. By (5) there must be some point $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]^{n}$ that does not belong to $\psi\left(\phi\left(\Lambda+v^{\perp}[-\delta, \delta]\right)\right)$.

We claim that for this α,

$$
y=\left(\sin \left(\alpha_{1}\right), \ldots, \sin \left(\alpha_{n}\right)\right)
$$

cannot be approximated arbitrarily well by a point of the form $\left(\sin \left(\omega x_{1}\right), \ldots, \sin \left(\omega x_{n}\right)\right)$. Indeed, suppose that for each i,

$$
\left|\sin \left(\omega x_{i}\right)-\sin \left(\alpha_{i}\right)\right|<\frac{\delta}{2 \sqrt{n}}
$$

Since $\psi \circ \psi: T \rightarrow[-\pi / 2, \pi / 2]^{n}$ is a contraction of metric spaces and since $\alpha \in\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]^{n}$, we have $\psi(\phi(\alpha))=\alpha$, and have, for each i,

$$
\left|\sin \left(\psi\left(\phi\left(\omega x_{i}\right)\right)\right)-\sin \left(\alpha_{i}\right)\right|<\frac{\delta}{2 \sqrt{n}}
$$

Since n is greater or equal to 1 , by (2)

$$
\delta \leq 2^{-1}<\pi / 6
$$

Also, the derivative of $\sin (x)$ (which of course is $\cos (x)$) is greater than $1 / 2$ in the interval $(-\pi / 3, \pi / 3)$. So we must have

$$
\left|\psi\left(\phi\left(\omega x_{i}\right)\right)-\alpha_{i}\right|<\left(\frac{\delta}{2 \sqrt{n}}\right)\left(\sup _{\alpha \in(-\pi / 3, \pi / 3)} \cos (x)^{-1}\right)=\left(\frac{\delta}{\sqrt{n}}\right) .
$$

This implies that the distance between $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and the set $\psi(\phi(\Lambda))$ is less than δ. However, our assumption that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ does not belong to $\psi\left(\phi\left(\Lambda+v^{\perp}[-\delta, \delta]\right)\right)$, implies that the distance of α to any point in $\psi(\phi(\Lambda))$ must be greater or equal to δ. This is a contradiction.

3 A Constructive Sufficient Condition

Let $x_{i}=. b_{i, 1} b_{i, 2} \cdots$ represent the binary expansion of x_{i}. That is, $b_{i, j} \in\{0,1\}$ and

$$
x_{i}=\sum_{j=1}^{\infty} b_{i, j} 2^{-j}
$$

Define x_{i} to be exhaustive iff every finite binary string appears somewhere in the binary expansion of x_{i}. That is, x_{i} is exhaustive iff for any k and any binary string $s_{1} s_{2} \cdots s_{k}$ of length k, there exists m such that

$$
b_{i, m-1+j}=s_{j} \text { for } j=1, \ldots, k
$$

Define the set x_{1}, \ldots, x_{n} to be mutually exhaustive iff for every set of n finite binary strings of the same length, there is a common index at which these n strings appear respectively in the binary expansions of x_{1}, \ldots, x_{n} starting at this index. That is, the set x_{1}, \ldots, x_{n} is mutually exhaustive iff for any k and any set of length k binary strings $s_{i, 1} s_{i, 2} \cdots s_{i, k}$ for $i=1, \ldots, n$, there exists $m<\infty$ such that

$$
b_{i, m-1+j}=s_{i, j} \text { for } i=1, \ldots, n \text { and } j=1, \ldots, k
$$

Theorem 2 If a distinct set of points x_{1}, \ldots, x_{n} with $0 \leq x_{i} \leq 1$ are mutually exhaustive then x_{1}, \ldots, x_{n} are approximable. That is, for any y_{1}, \ldots, y_{n} with $-1<y_{i}<1$, a function of the form

$$
y=\sin (\omega x)
$$

can approximate the set of points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ arbitrarily closely in the sense that for every $\epsilon>0$ there exists ω such that

$$
\left|\sin \left(\omega x_{i}\right)-y_{i}\right|<\epsilon \text { for } i=1, \ldots, n
$$

Proof:

Choose $\alpha_{i} \in(0,1]$ such that $\sin \left(2 \pi \alpha_{i}\right)=y_{i}$, and let δ be such that $\mid \sin (2 \pi \alpha)-$ $\sin (2 \pi \beta) \mid<\epsilon / 2$ whenever $|\alpha-\beta|<\delta$.

Choose k large enough so that $2^{-k}<\delta$. Let β_{i} be the first k bits in the binary expansion of α_{i}. Since $\alpha_{i}, \beta_{i} \in[0,1]$ and they agree on the first k bits, we have $\left|\beta_{i}-\alpha_{i}\right| \leq$ $2^{-k}<\delta$, so that

$$
\left|\sin \left(2 \pi \beta_{i}\right)-\sin \left(2 \pi \alpha_{i}\right)\right| \leq \epsilon / 2
$$

Since x_{1}, \ldots, x_{n} are mutually exhaustive, there exists $m<\infty$ so that for each $i=$ $1, \ldots, m$, the string β_{i} appears in the binary expansion of x_{i} starting at position m.

Let $r(x)=x-\lfloor x\rfloor$ denote the non-integer part of x. Then since $r\left(2^{m} x_{i}\right), \beta_{i} \in[0,1]$ and they agree on the first k bits, we have

$$
\left|r\left(2^{m} x_{i}\right)-\beta_{i}\right| \leq 2^{-k}<\delta
$$

so that

$$
\left|\sin \left(2 \pi r\left(2^{m} x_{i}\right)\right)-\sin \left(2 \pi \beta_{i}\right)\right| \leq \epsilon / 2
$$

Thus, if we let $\omega=2 \pi 2^{m}$ then

$$
\begin{aligned}
\left|\sin \left(\omega x_{i}\right)-y_{i}\right| & =\left|\sin \left(2 \pi 2^{m} x_{i}\right)-\sin \left(2 \pi \alpha_{i}\right)\right| \\
& =\mid \sin \left(2 \pi r\left(2^{m} x_{i}\right)-\sin \left(2 \pi \alpha_{i}\right) \mid\right. \\
& \leq\left|\sin \left(2 \pi r\left(2^{m} x_{i}\right)\right)-\sin \left(2 \pi \beta_{i}\right)\right|+\left|\sin \left(2 \pi \beta_{i}\right)-\sin \left(2 \pi \alpha_{i}\right)\right| \\
& <\epsilon / 2+\epsilon / 2 \\
& =\epsilon
\end{aligned}
$$

Think of x as the result of an series of tosses of a fair coin with 1 representing heads and 0 representing tails. With respect to the resulting probability distribution, we can say that almost every x is ϕ iff the probability that x is ϕ is 1 .

Theorem 3

(a) Almost every x such that $0 \leq x \leq 1$ is exhaustive.
(b) Almost every set of values x_{1}, \ldots, x_{n} such that $0 \leq x_{i} \leq 1$ is mutually exhaustive.

Proof of (a): For any string s of length k, the probability that s occurs starting at the first position in x is $p=1-1 / 2^{k}$. Similarly for the probability that s occurs starting at any other position in x. The probability that s does not occur at any given one of these positions is $(1-p)$. Since the probabilities that s does not occur starting at positions $1+k q$ for all nonnegative integers q are independent, the probability that s does not occur starting at the first j of those positions is $(1-p)^{j}$, which approaches 0 as n approaches infinity. So the probability that s does not occur anywhere in x is 0 . Since there are only finitely many strings of length k, the probability that not all strings of length k occur in x is also 0 . Furthermore, the probability that not all strings occur in x is no greater than the sum for k from 0 to infinity of the probabilities that not all strings of length k occur in x, which is 0 .

Proof of (b): The proof is similar to the proof of (a). Consider any n strings $s_{1}, s_{2}, \ldots, s_{n}$ each of length k. There is a small but finite probability $p=1 / 2^{n k}$ that these strings occur starting at the first position in $x_{1}, x_{2}, \ldots, x_{n}$ respectively. The probabilities that these strings do not occur starting at the same position $1+k q$ in each of these strings for any nonnegative integer q are independent of each other and are each equal to $(1-p)$. Since $(1-p)^{n}$ approaches 0 as n goes to infinity, the probability that there is no position at which each of the strings appears in $x_{1}, x_{2}, \ldots, x_{n}$ is therefore 0 . This is true no matter what length k of strings is considered. So, the probability that $x_{1}, x_{2}, \ldots, x_{n}$ are mutually exhaustive is 1 .

Note that Theorems 2 and 3 together immediately imply that almost every set of points x_{1}, \ldots, x_{n} with $0 \leq x_{i} \leq 1$ is approximable. This also follows from Theorem 1 and the fact that almost every set of points x_{1}, \ldots, x_{n} with $0 \leq x_{i} \leq 1$ are linearly independent over the rationals.

4 Acknowledgements

We would like to thank Elliott Sober and Casey Helgeson for helpful discussions.

References

[1] E.B. Burger, Exploring the Number Jungle: A Journey Into Diophantine Analysis, American Mathematical Society, 2000.
[2] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 5th Edition, 1979, reprinted 2003.
[3] S. Lang, Introduction to Diophantine Approximations, Springer-Verlag, 1995.
[4] G. Larcher and H. Niederreiter, "Kronecker-type sequences and nonarchimedean diophantine approximations", Acta Arithmetica, Vol. 63, No. 4, pp. 379-396, 1993.

[^0]: *This research was supported in part by the Center for Science of Information (CSoI), an NSF Science and Technology Center, under grant agreement CCF-0939370.
 ${ }^{\dagger}$ Gilbert H. Harman is with the Department of Philosophy, Princeton University, Princeton, NJ 08544. His email address is harman@princeton.edu. Sanjeev R. Kulkarni is with the Department of Electrical Engineering, Princeton University, Princeton, NJ 08544. His email address is kulkarni@princeton.edu. Hariharan Narayanan is with the Departments of Statistics and Mathematics, University of Washington, Seattle, WA 98105. His email address is harin@uw.edu.

