Skip to main content

Inference for Individual-Level Models of Infectious Diseases in Large Populations

Author(s): Deardon, Rob; Brooks, Stephen P.; Grenfell, Bryan T.; Keeling, Matthew J.; Tildesley, Michael J.; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12d9p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeardon, Rob-
dc.contributor.authorBrooks, Stephen P.-
dc.contributor.authorGrenfell, Bryan T.-
dc.contributor.authorKeeling, Matthew J.-
dc.contributor.authorTildesley, Michael J.-
dc.contributor.authorSavill, Nicholas J.-
dc.contributor.authorShaw, Darren J.-
dc.contributor.authorWoolhouse, Mark E.J.-
dc.date.accessioned2019-04-19T18:35:27Z-
dc.date.available2019-04-19T18:35:27Z-
dc.date.issued2010-01en_US
dc.identifier.citationDeardon, Rob, Brooks, Stephen P., Grenfell, Bryan T., Keeling, Matthew J., Tildesley, Michael J., Savill, Nicholas J., Shaw, Darren J., Woolhouse, Mark E.J. (2010). Inference for Individual-Level Models of Infectious Diseases in Large Populations. Stat Sin, 20 (1), 239 - 261en_US
dc.identifier.issn1017-0405-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr12d9p-
dc.description.abstractIndividual Level Models (ILMs), a new class of models, are being applied to infectious epidemic data to aid in the understanding of the spatio-temporal dynamics of infectious diseases. These models are highly flexible and intuitive, and can be parameterised under a Bayesian framework via Markov chain Monte Carlo (MCMC) methods. Unfortunately, this parameterisation can be difficult to implement due to intense computational requirements when calculating the full posterior for large, or even moderately large, susceptible populations, or when missing data are present. Here we detail a methodology that can be used to estimate parameters for such large, and/or incomplete, data sets. This is done in the context of a study of the UK 2001 foot-and-mouth disease (FMD) epidemic.en_US
dc.format.extent239 - 261en_US
dc.languageengen_US
dc.language.isoenen_US
dc.relation.ispartofStatistica Sinicaen_US
dc.rightsAuthor's manuscripten_US
dc.titleInference for Individual-Level Models of Infectious Diseases in Large Populationsen_US
dc.typeJournal Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
nihms712400.pdf1.33 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.