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Abstract

Individual Level Models (ILMs), a new class of models, are being applied to infectious epidemic 

data to aid in the understanding of the spatio-temporal dynamics of infectious diseases. These 

models are highly flexible and intuitive, and can be parameterised under a Bayesian framework 

via Markov chain Monte Carlo (MCMC) methods. Unfortunately, this parameterisation can be 

difficult to implement due to intense computational requirements when calculating the full 

posterior for large, or even moderately large, susceptible populations, or when missing data are 

present. Here we detail a methodology that can be used to estimate parameters for such large, 

and/or incomplete, data sets. This is done in the context of a study of the UK 2001 foot-and-mouth 

disease (FMD) epidemic.
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1. Introduction

The spatio-temporal modelling of infectious diseases is an area of great importance. 

Accurately modelling the infectious dynamics of a disease enables scientists to understand 

risk factors associated with transmission and, through this, develop viable control strategies 

for potential future outbreaks. There are obvious public health and/or economic benefits in 

understanding the infectious dynamics of diseases in humans, animals, and plants. 

Furthermore, it is well understood how important the spatial aspect to these dynamics is in 

understanding disease spread (e.g., Lawson, 2001).

The focus of this paper is on modelling infectious disease epidemics through time and space 

at the level of individuals in a population. Here, individuals are represented as discrete 

points in time and space. In the resulting ‘individual-level model’ (ILM) (sometimes known 

as an individual-based model), the probability of a susceptible individual being infected 

from the infectious pressure exerted upon it from the surrounding infectious population is 

quantified. The resulting models are highly intuitive and flexible (e.g., Gibson, 1997; 

Keeling, Woolhouse, Shaw, Matthews, Chase-Topping, Haydon, Cornell, Kappey, 

Wilesmith and Grenfell, 2001; Jamieson, 2004). However, they are also typically 

computationally costly to parameterise.

Examples of such models are not readily found in the literature. Lawson (2001) develops an 

approach wherein infectious individuals are modelled explicitly as individuals, and the 

susceptible population through a random field. Gibson and Austin (1996) detail the use of an 

ILM in plant epidemiology. Gibson (1997) and Marion, Gibson and Renshaw (2003) use 

Markov chain Monte Carlo (MCMC) methodology and importance sampling, respectively, 

to develop inference for this model. Neal and Roberts (2004) detail a two-level ILM to study 

a localised outbreak of measles in school children in a village in Germany. Also, Jamieson 

(2004) develops an ILM to study the spatio-temporal dynamics of citrus canker.

There are a number advantages to setting such models within a Bayesian MCMC 

framework. First, there are the obvious desirable mathematical and philosophical properties 

of the Bayesian approach itself (e.g., Robert, 2001). MCMC affords us a very powerful tool 

for carrying out inference on highly complex models, and hence great flexibility in our 

choice of model. Another highly desirable feature of this framework is the ability to easily 

impute missing data, which is a major cause for concern in spatial epidemiology, and to 

estimate marginal posterior densities for these data. In terms of practical outcomes, using the 

full-posterior Bayesian approach also allows parameter (and, in theory, model) uncertainty 

to be incorporated into simulation studies used to test control strategies. This can be 

especially important when looking at extremes (e.g., worst-case scenario problems).
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However, a major problem with using ILMs can be the computational difficulty in 

calculating the full likelihood. This is especially the case in epidemics in large populations 

(examples cited above are all for relatively small epidemics) or if imputing a large amount 

of missing data. Approximate techniques can be considered (e.g., Filipe and Gibson, 2001; 

Diggle, 2006) although these tend to have case specific downsides, as well as losing some or 

all of the advantages mentioned above.

In this paper we show how to carry out full posterior computation for ILMs by separating 

the likelihood into a small component, which needs to be recalculated as parameters vary, 

and a large component which remains constant as parameters vary. This may require care in 

choosing our ILM model, as we shall see, as the inference techniques here developed are 

applied to data from the UK 2001 foot- and-mouth disease (FMD) epidemic.

In Section 2 we introduce the type of data we are interested in analysing, and the general 

form of the ILM which is to be used. In Section 3 we present some background information 

about the 2001 UK FMD epidemic, and the original model of Keeling et al. (2001) from 

which our models are developed. In Section 4 we detail an extension of the model of 

Keeling et al. (2001) and the motivation behind the extension. In Section 5 we discuss the 

Bayesian framework in which the model is set, along with the computational problems in 

calculating the full likelihood for ILMs and the computational methodology used to make 

the likelihood computable within a non-prohibitive time span. In Section 6 we discuss an 

example of the methodology which can be used in the context of missing data in ILMs; in 

this case, that used to impute the infection dates of certain high risk farms. We then present 

some results regarding parameter estimation for the UK 2001 FMD epidemic in Section 7, 

and go on to discuss some possible future directions for research into infectious disease 

epidemics in Section 8.

Additionally, the results of a small simulation study carried out in the context of using the 

Bayesian model to optimise a particular FMD control policy is contained in Section 12 of 

the supplementary material.

2. Infectious Disease Data and the General Model

The models with which we are concerned are formulated as discrete-time SEIR models (here 

we use the notation . This means that at any given point in time an individual i can be in 

one of four states: i ∈  implies individual i is susceptible to the disease; I ∈  implies that 

individual i has been exposed to the disease (i.e., has been infected, but is not yet 

infectious); i ∈  implies that individual i is infectious; i ∈  implies that individual i has 

been removed from the population (e.g., through recovery accompanied by gained immunity 

to the disease). Models within other compartmental frameworks (e.g., ) could also be 

parameterised using the methodology of this paper, but we do not cover this here.

In order to parameterise the ILMs it is necessary to have knowledge (actual or estimated) 

about the event history of individuals. That is, for t = 1, …, ∞, it is necessary to know if 

individual i is in state , ,  or . We refer to an individual i in one of these four states at a 

given time t as being in the sets (t), (t), (t) or (t) respectively. Note that here we 
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discretise time so that an event which occurs in the continuous time interval [t, t + 1) is 

referred to as occurring at time t.

2.1 The general model

In this section we present the general form of the epidemic ILM. Here we consider that the 

transitions from  to  and  to , defined by the rates  and , respectively, are fixed 

and known. However, it would be quite possible to extend this model to the case where we 

estimate  and .

Letting P (i, t) denote the probability that previously uninfected (susceptible) individual i

(2.1)

is newly exposed within the time interval [t, t + 1), the general ILM is given by where (t) is 

the set of infectious individuals at time t; ΩS (i) represents risk factors associated with 

susceptible i (i.e., susceptibility); ΩT (j) represents risk factors associated with infectious 

individual j (i.e., transmissibility); κ(i, j) is an infection kernel representing risk factors 

involving both the infected and susceptible individuals (often based upon their separation 

distance, dij); and ε(i, t) is some infection process which describes some other random 

behaviour (this might represent infections from outside the population considered, or those 

not explained by the basic framework of the model).

ΩS (i) and ΩT (j) could be functions of various risk factors; for example, they could represent 

social interaction measures, genetic information, the size of sub-population (if an individual 

refers to a sub-population of susceptibles such as on a farm), or environmental risk factors 

associated with the location of the individual.

The infection kernel κ(i, j) is often used to characterise the risk of infection over some 

distance measure. For example, κ(i, j) could be a function of Euclidean or road distance 

(Savill, Shaw, Deardon, Tildesley, Keeling, Brooks, Woolhouse and Grenfell, 2006). 

Alternatively, it could represent traffic flows between towns, cities or farms.

The term, ε(i, t), that represents infections which are not well explained by the model 

structure as given by ΩS (i), ΩT (j) and κ(i, j), could be a purely random infection sparks 

term (ε(i, t) = ε). Alternatively, it could be a function of susceptible factors (e.g., ε(i, t) = ε(i) 

= ∈ΩS(i)), or could be a function of the current size of the epidemic.

Given a record of infection events at discrete time points t = 0, …, T during the epidemic, 

the likelihood is simply a product over those time points so that

(2.2)

where
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, and θ is the vector of 

unknown parameters. That is, ft(  |θ) is the probability of all observed new infections 

in time interval [t, t + 1) being infected, and all observed non-infected individuals in time 

interval [t, t + 1) not being infected.

The primary purpose of this paper is to present a general methodology for parameterising 

infectious disease ILMs when large datasets are being used. This is done using the 2001 UK 

FMD epidemic as a case study.

3. Case Study: Foot and Mouth Epidemic of 2001

To illustrate the application of the general ILM of Section 2.1 in a large population, we look 

to the UK foot-and-mouth disease (FMD) epidemic of 2001.

The UK foot-and-mouth epidemic of 2001 is thought to have entered the UK in early 

February of that year. By the time it had been discovered and movement restrictions 

imposed, around 70 farms had been infected (Anderson, 2002). The epidemic resulted in 

recorded known infections and culls at Infected Premises (IPs) across the UK. Over 10,000 

other farms with unknown infection status, but determined to be at high risk, had animals 

slaughtered. In total over four million animals were slaughtered as part of the control 

program to eradicate the disease.

The additional (non-IP) slaughter policy had two main components. One was the 

slaughtering of animals on farms designated Contiguous Premises (CPs), which were farms 

judged to have shared a common border with an IP. The second was the slaughtering of 

animals on farms designated Dangerous Contacts (DCs). These were farms in which there 

had been known contact of some sort with an IP (e.g., a milk tanker had visited a DC shortly 

after visiting an IP).

There is evidence to show that at least some aspects of the slaughter policy used were 

critical in controlling the epidemic (Keeling et al., 2001; Ferguson, Donnelly and Anderson, 

2001a,b; Morris, Wilesmith, Stern, Sanson and Stevenson, 2001). However, there is little 

evidence to suggest that this slaughter policy was optimal in terms of disease control. Work 

has been carried out (Keeling, Woolhouse, May, Davies and Grenfell, 2003; Tildesley, 

Savill, Shaw, Deardon, Brooks, Woolhouse, Grenfell and Keeling, 2006) to develop 

improved control strategies to inform future culling and/or vaccination policies. (DEFRA’s 

current policy on vaccination and control is detailed in DEFRA, 2005). However, in order to 

devise a good control policy based on the 2001 UK epidemic, as good a model of that 

epidemic, and as rigorous an approach to the problem of parameterisation as possible, are 

required.
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The data which we use to parameterise the models come from two sources. The first is the 

UK census of June 2000 which gives a list of all farms contained in the set  (i.e., potential 

susceptibles). The census lists the number of different types of animals at each farm, as well 

as an X and Y ordnance survey location for the farmhouse of the farm. The second is the 

dataset of farms which were directly involved in the 2001 epidemic, all farms known to have 

been infected (IPs) and farms on which animals were culled. This data set directly gives the 

cull-dates of each farm on which animals were culled. Dates of exposure and infectiousness 

for IPs are inferred from disease reporting dates, expert veterinary opinion about the extent 

of disease progress at reporting, and assumptions about the length of the disease latency 

period (the time from exposure to infectivity). Thus, we have a data set from which the sets, 

(t), (t), (t), and (t), t = 1, …, ∞ can be inferred in the case of IPs and farms not 

exposed to FMD.

Of course, this is not the case for CPs and DCs for which the date of removal from the 

population is known, but the dates of exposure (and on which infectivity began) are not. 

This is dealt with in Section 6. We also assume that farms on which animals were culled that 

were not CP or DC culls (e.g., welfare cull farms; see Anderson, 2002) were uninfected 

before slaughter. For farms on which animals were not culled the assumption is made that 

they were never exposed to FMD; that is, there was no exposure to FMD in 2001 which died 

out naturally without being observed.

(N.B. The data has been extensively cleaned for the analyses of this paper, as well as that of 

Tildesley et al., 2006 and Savill et al., 2006; this will be detailed in work to be published.)

3.1. The Keeling model

Keeling et al. (2001) details an explicitly spatial ILM and the general form of Section 2.1 

holds as follows. Individuals, here, are farms rather than animals upon the farms. Time, 

here, is measured in days. It is assumed that once exposed to FMD, the farm would remain 

in that exposed state for five days, and then become infectious for four days. After this point, 

it is assumed that symptoms would be visible and so the farm would be reported and 

subsequently removed from the population through animal slaughter (state ).

Under this model, which we refer to as the Keeling model, the probability of susceptible 

farm i being infected during time period [t, t + 1) is given by (2.1), where ΩS (i) = SNi, ΩT 

(j) = TN j, κ(i, j) = KT (dij), and ε(i, t) = 0. Here, S denotes a susceptibility vector, (Ss Sc), 

where Ss and Sc describe the rate of increase in susceptibility of a susceptible farm per 

additional sheep and cow, respectively. Similarly, T denotes the transmissibility vector, (Ts 

Tc), where Ts and Tc denote parameters describing the rate of increase in infectious pressure 

per additional sheep and cow, respectively, that an infectious farm exerts on the susceptible 

population. Ni denotes the number of animals vector, (Ni,s Ni,c)T, where Ni,s is the number of 

sheep on farm i, and Ni,c is the number of cattle on farm i. Finally, KT(dij) denotes a 

distance-based kernel estimated from DEFRA tracing data (Keeling et al., 2001), where dij 

denotes the distance between the farmhouses of farms i and j. The tracing kernel is described 

in Section 4.1 and is shown in Figure 1. To ensure identifiability, Ss = 1.0 is fixed and, thus, 

the only free parameters in the Keeling model are T and Sc.
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Parameterisation of the model was originally carried out using a mixture of maximum 

likelihood estimation and fine tuning by running forward simulations, and using a goodness-

of-fit measure. This procedure produces forward simulations that mimic important 

characteristics of the 2001 epidemic, suggesting a reasonable model. However, it is well 

known that such conditional parameterisation can lead to misleading results. Also, 

parameterisation via forward simulations and goodness-of-fit requires the mimicry of the 

2001 culling policy which is difficult, and may introduce some bias in the parameterisation. 

There is obviously a case for carrying out a more rigorous attempt at the parameterisation, 

although, of course, the approach of Keeling et al. (2001) (as well as that of Diggle, 2006 

and Ferguson et al., 2001a,b) has the advantage of relatively simple and quick 

parameterisation methods which a more rigorous approach does not necessarily allow.

4. Extending the Model

We extend the basic model of Keeling et al. (2001) in several key ways: we introduce a 

geometric change-point transmission kernel whose parameters will be estimated along with 

other key model parameters; we introduce a sparks term which allows for spontaneous 

unexplained infection; and we allow for a non-linear relationship between animal numbers 

and both infectivity and susceptibility. The purpose of these extensions is given in Sections 

4.1–4.3.

4.1. Distance kernel

The DEFRA tracing data distance kernel was estimated by veterinarians on the ground 

considering the event history at the time of an IP being reported and making a best guess at 

the source of the infection. The distances between IPs and their tracing data source were 

then normalised to form the kernel, KT (dij). However, it could be argued that such a 

subjectively-based distance kernel would overestimate the effect of short distance infections 

and underestimate the effect of the long distance infections. We therefore extend the Keeling 

model by introducing a more general kernel whose parameters are estimated using the 

infection data described in the previous section.

A geometric distance kernel was chosen, although it would be possible to use an 

exponential-based kernel. The geometric kernel was preferred since it has more mass in the 

tails of the kernel, and thus allows for the possibility of longer distance infections.

Experimentation with the FMD data suggested that the geometric kernel failed to adequately 

describe short range transmissions as the geometric shape was largely determined by a tail 

that describes the longer-range transmissions. Over shorter distances, different disease 

transmission dynamics come into play with close farms tending to share boundaries. Also, 

the assumption that the distance between farmhouses adequately reflects the distance 

between the location of farm animals begins to break down. Thus, we introduce a change-

point to our model at some distance δ0, to be determined, within which we assume a 

constant disease transmission rate, k0.

Thus, we have a disease transmission kernel of the following form:
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with parameters k0, δ0 and b. δmax is fixed a priori and restricts the maximum distance over 

which infections can occur. Here we set δmax = 30km. The selection of δmax clearly has 

some bearing on the results, with more of the epidemic being generated by infection sparks 

(Section 4.3) as δmax is reduced. However, increasing δmax above 30km produces relatively 

little change in other parameters.

Clearly if δ0 = 0, the kernel simplifies to , a kernel that roughly describes the 

shape of the tracing data kernel, KT (dij). We use the tracing data kernel to provide the prior 

information for b. This is described in Section 7.1.

4.2. Introducing non-linearity

In the original model of Keeling et al. (2001) the assumption was made that the relationships 

between numbers of animals on infecting, and susceptible, farms and the infection rate was 

linear. To test this assumption we redefine the ΩS and ΩT functions so that

Clearly, the original linear model is a special case of this more general specification.

It might be expected that transmissibility and susceptibility as defined here would be, at least 

in part, surrogates for the risk of animals from different farms mixing (e.g., due to animal 

movements). If this is so, it would seem unlikely that the linear assumption would be an 

accurate one to make, since we might expect that the risk of mixing does not increase by the 

same degree when a given increase in animal numbers starts from a low number, as when 

the increase starts from a high number.

4.3. Infection sparks

Finally, we introduce a new parameter which allows for spontaneous infections that is 

unexplained by the susceptibility, transmissibility and kernel components of the model. This 

term traditionally allows for infectious pressure from outside the study area. In our case, it 

allows for infection beyond the δmax limit (e.g., long distance movement of vehicles or 

people, for example).

Though other choices are possible, we assume that the risk of spark infection on farm i at 

time t is directly affected by the susceptibility, ΩS(i), and by the number of infectious farms 

during the interval [t, t + 1), |I(t)|. In this way, the risk of infection through the ε term 

increases with the underlying susceptibility of the farm, but also follows the course of the 

epidemic so that a spark-based infection will be most likely when there are large numbers of 
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infectious farms, and will tend to zero as this number decreases. Thus, we take ε(i, t) = 

−∈ΩS(i) | I(t)|.

4.4. Resulting model

These extensions together give us a new model with associated probability of susceptible 

farm i being infected during time period [t, t + 1) given by

(4.1)

As before, we set Ss = 1 to make the model identifiable and so the vector of model 

parameters to be estimated is given by θA = (Ts, Tc, Sc, b, ∈, δ0, k0, ψS,s, ψS,c, ψT,s, ψT,c).

Some examples of possible distance kernels and susceptibility/transmissibility curves are 

given in Figures 4 and 5, which can be found in the on-line supplementary material.

5. Bayesian Computation

5.1. The posterior and simulation

Parameter estimation is carried out here within a Bayesian framework. The likelihood for 

our model is obtained by the substitution of (4.1) into (2.2) to give

(5.1)

We assume priors for our parameters (Section 7.1) to obtain our posterior distribution πA(θ | 
) up to a constant of proportionality. We explore the posterior via Markov chain 

Monte Carlo (MCMC) with Metropolis Hastings parameter updates (Section 7.2). For a 

more detailed description of MCMC within a Bayesian framework see, for example, 

Gammerman and Lopez (2006).

5.2. Minimising computational expense

Bayesian computation via Metropolis-Hastings MCMC requires the recalculation of πA(θ | 
) many, many times, with varying θ, to obtain a dependent sample from the posterior. 

The 2001 FMD dataset records over 160,000 farms, with just over 10,000 of those being 

directly affected by FMD either through being infected or culled. Thus, for any given t, the 

set (t + 1) consists of around 150,000 elements. This means that the calculation of (5.1) at 

every MCMC iteration becomes prohibitive due to the need to compute, for each t, the right-

hand product
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(5.2)

(The set (t) will, of course, comprise far fewer elements for any given day of the epidemic 

than (t + 1), so the left-hand product of (5.1) is much more manageable.)

To facilitate the computation for large data sets we seek to avoid recalculating (5.2) in its 

entirety at every MCMC iteration. In this section, we assume that the infection status of all 

farms is known from the start of the simulation and remains fixed throughout. (Dates of 

infection may be considered variable in the case of CP and DC-culled farms, however, and 

this case is discussed in Section 6.) We then show how, by linearising the model, we are 

able to split the time-consuming summations in the likelihood into two groups: those which 

are computationally expensive but need to be calculated only once; and those which are 

much quicker to compute but change with the parameter values and therefore need to be 

recalculated throughout the simulation.

5.3. Linearising the model

The model is linearised by taking Taylor series expansions of the appropriate terms in (4.1) 

so that the summations are split into two distinct groups. In our case the ΩS(i), and κ(i, j) 

terms require linearisation. Let  (f; x, x0) denote the kth-order Taylor series expansion of 

the function f(x) around the point x0. Then the probability of susceptible farm i being 

infected during time period [t, t + 1) is given by

(5.3)

where

for q ∈ (s, c}; here KB (dij) is a linearised version of distance kernel KA (dij),

and .

Deardon et al. Page 10

Stat Sin. Author manuscript; available in PMC 2015 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



So, for the new model, PB(i,t) → PA(i,t) as b → β, ψS,s → φS,s and ψS,c → φS,c. The choice 

of β, φS,s and φS,c is discussed in Section 5.5.

5.4. Partitioning the summations

We now consider how to partition the likelihood in such a way as to make the calculation 

computationally feasible. Replacing PA(i, t) by PB (i, t) in (5.2) gives

(5.4)

and, substituting (5.3) into (5.4),

say.

We now show how the sums in these expressions can be separated into those which either 

depend on the model parameters, and therefore require calculation throughout the 

simulation, or depend only on the data and therefore can be calculated just once at the 

outset.

Consider the term  which can be rewritten as

(5.5)

where the  for x ∈ {1, 2, 3} and q ∈ {s, c} are given in the Appendix in the 

supplementary material.

It is clear that each of the ζ1,x terms are independent of the model parameters and can 

therefore be calculated at the start of the simulation. Similarly, we can split the summations 

in , though this is complicated somewhat by the dependence of the kernel on δ0.

First, note that we can rewrite the definition of  as
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(5.6)

Where  (j, t) = {i : i ∈  (t + 1) and dij ∈ [0, δmax]}, and  (j, t) = {i : i ∈  (t + 1) and dij 

∈ [0, δ0]}.

Now we can rewrite  as

where,

(5.7)

with the , for x ∈ {1, … 9} and q ∈ {s, c} as defined in the Appendix. As before, it 

is clear that each of the  terms are independent of the model parameters and can 

therefore be calculated once at the start of the simulation.

Of course,  cannot be made independent of all parameters in the same way as 

, because it explicitly depends on the change point, δ0, in the range of summation. 
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However, assuming the number of elements in (j, t) is relatively small (which is the case 

for the UK 2001 FMD data),  can be fairly cheaply calculated with careful 

programming. The algorithm used here requires a maximum value of δ0, , to be set. 

Here  was found to be adequate.

Of course, these Taylor series expansions require the specification of an appropriate 

centering point which we briefly consider in the next section.

5.5. Values of β, φS,s and φS,c

The computational methodology of this section provides a way of forming a likelihood 

which is computationally feasible within the framework of full-posterior sampling. 

Unfortunately, the parameter space of the linearised model, PB (i, t), is different from that of 

model PA(i, t), except when b = β, ψS,s = φS,s and ψS,c = φS,c. This difference means that as b 

deviates from β, ψS,s deviates from φS,s, and ψS,c deviates from φS,c, the parameters b, ψS,s, 

and ψS,c, become harder to interpret, respectively. Thus, it is useful to try and find sensible 

values for these parameters that approximate the values we might expect for the true 

parameter values.

The availability of the tracing data kernel, KT (dij), provides an obvious means for selecting 

a suitable value of β. Here β̂ was obtained by fitting the model

(5.8)

where L denotes the set of discretised distances over which the tracing data kernel is defined 

and ει ~ N(0, σ2). Along with the scale parameter estimate α̂ = 1,284.2, the rate parameter 

estimate was given by β̂ = −1.62, and the variance parameter by σ̂2 = 0.000350.

Various settings of φS,c ∈ (0, 1.5) and φS,s ∈ (0, 1.5) were tested. It was found that the 

setting φS,c = φS,s = 1.0 produced high levels of likelihood and good MCMC mixing 

properties. These values of φS,c and φS,s also resulted in marginal mean posterior estimates 

of ψS,s and ψS,c for which ψS,s ≈ φS,s and ψS,c ≈ φS,c, thus aiding interpretation of ψS,s and 

ψS,c.

6. Imputing the Dates of Infection of CPs and DCs

The methodology described so far relies on the assumption that the infection status of all 

farms is known throughout the epidemic. Section 3 detailed how this information was 

arrived at for IPs. However, no such information is available for CP and DC farms since 

they could have been infected but culled before symptoms appeared. We consider the 

estimation of the proportion of these farms which were infected before culling, λC. The 

computational methodology used to do this is detailed in Section 9 in the supplementary 

material.
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7. Parameter Estimates for the UK 2001 FMD Epidemic

7.1. Priors

When included in the model, b, the kernel power-law parameter, is informed by the tracing 

data. However, a fairly vague prior is used, (b) ~ (β̂, 10 × s.e.(β̂)2), where β̂ is the estimate 

of β as obtained by fitting the model shown in (5.8), and s.e.(β̂), its standard error. Recall 

from Section 5.4 that β̂ = −1.62 and s.e.(β̂)2 = 0.000350. A small sensitivity analysis was 

carried out that appeared to show that increasing the variance of p(b) has little effect upon 

the mean posterior of b.

Positive half-normal priors with high variance (σ2 = 10, 000) are assigned to the model 

parameters Ts, Tc, Sc, ψS,s, ψS,c, ψT,s and ψT,c. Parameter k0 is assigned the same prior when 

included in the model. Normal priors with the same variance, but centered around high 

positive values (e.g., 1,000), produce very similar results to the half-normal priors, implying 

they are non-informative. A negative half-normal prior with variance σ2 = 10, 000 is 

assigned to ∈. Finally δ0, when included in the model, is assigned a uniform prior over the 

range [0, ].

7.2. Results

Section 10 in the supplementary material details a comparison between the models used 

here, and that of Keeling et al. (2001). Section 11, in the on-line supplementary material, 

details a small simulation study used to ascertain that the estimation procedures employed in 

this paper are working correctly.

Parameter estimates for two versions of the model are given. Both models include a sparks 

term (∈) and allow for non-linear susceptibility and transmissibility. The first model, PT, 

uses the tracing data kernel and the second, PB, uses the change-point kernel. The full 

expression for PT is

(7.1)

and PB is given in (5.3).

The estimation was carried out with a Metropolis Hastings MCMC algorithm using, in the 

main, random walk proposals to update parameters. When included in the model, parameters 

b, Sc, ∈, k0, δ0, ψS,s, and ψS,c were updated using single component normally distributed 

random walk proposals. Parameters Ts and ψT,s, and, Tc and ψT,c, were updated as two 

separate block updates to allow for correlation between each respective pair.

Marginal posterior density means and 95% HPDIs for both the PT and PB models are shown 

in Table 1. Of those parameters which are estimated in both models, Sc and the non-linearity 

parameters ψT,s, ψT,c, ψS,s, and ψS,s do not seem to differ significantly (e.g., there is overlap 

in the 95% HPDIs for these parameters).
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The transmissibility parameters, Tc and Ts, are not really comparable due to the difference in 

scale of the infection kernels used in each model and the fact that they are meaningless 

without consideration of ψT,s and ψT,c. In the case of ∈, the mean posterior value for the PT 

model (5.76 × 10−10) is more than double that of the PB model (2.45 × 10−10). The distance 

kernels obtained via the mean posterior distribution for each of the two models are shown in 

Figure 1. KB is rescaled to take account of the difference in scale of transmissibility between 

PB and PT. We can see that the estimated kernel of PB does indeed suggest (as mentioned in 

Section 4.1) that the tracing data kernel overestimates the risk of short-distance infection, 

and underestimates that of long-distance infections. The larger magnitude of ∈ in the PT 

model is likely correcting for this, allowing for more long-range infections. It should also be 

noted that though the values of ∈ given are small for both models, this still accounts for a 

sizeable number of infections.

We can see that λC is larger for PT (0.063) than for PB (0.035); this difference may be due to 

the fact that the infection of CP culls, which tend to be close to IPs, are more likely under 

model PT wherein the tracing data kernel is used.

Note that there is a small discontinuity at the change point for PB, since no constraint is 

made that the lines on either side of the change point should meet. Intuitively, it would seem 

more natural for the lines to be forced to meet if describing a simple biological process. 

However, since the distance kernel is an approximation of a number of disparate infection 

mechanisms, we felt this constraint would be unreasonable, and allowed the kernel to be 

more empirically based.

The relationships between animal numbers and susceptibility, and animal numbers and 

transmissibility, given for the posterior mean, are shown in Figures 2 and 3. These plots 

show how the susceptibility (Sq Ni,q
ψSq, q ∈ {s, c}), and transmissibility (Tq Ni,q

ψT,q, q ∈ {s, 

c}), for each animal species under each model, PT and PB, vary as animal numbers vary.

We observe from these plots that the qualitative conclusions of Keeling et al. (2001), that 

each individual cow was more likely to transmit the disease, and also likely to be more 

susceptible to the disease than each individual sheep, are supported here. It would appear, 

however, that the linear assumption made in that paper was questionable in terms of 

transmissibility (a linear approximation looks more reasonable in the case of susceptibility).

Both in terms of susceptibility and transmissibility, the relationship with numbers of sheep, 

as compared with that of cattle, seems to be almost flat. More specifically, in terms of 

susceptibility, it would appear that an increase in sheep numbers on a farm has a 

unimportant effect, relative to a similar increase in cattle, on the risk of that farm being 

infected. In terms of transmissibility, it would appear that an increase in sheep numbers 

above a certain low threshold (around 20, dependent upon which model we consider), on a 

given infectious farm, has almost no effect on the risk of infection of susceptible farms.

It also appears that the relationship between susceptibility and animal numbers is very 

similar under both models PT and PB, with the susceptibility ratio between sheep and cattle 

being slightly lower when the tracing data kernel is used. This plot also suggests that the 
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transmissibility ratio between sheep and cattle is higher when the tracing data kernel is used, 

and the magnitude of this ratio difference increases as animal numbers increase.

8. Discussion

We consider some work that might be carried out in the future. First, in the FMD example in 

this paper, we assumed a constant latent period. This latent period could, however, be 

allowed to vary, and thus be estimated. To do this, the ‘static’ ζ terms of Section 5 would 

need to be calculated and stored for different latent periods (i.e., an extra dimension added to 

the ζ variables). The techniques used to impute missing infection times in Section 6 could 

also be extended to allow for a variable infectious period. Similar techniques would be 

required to carry out reversible jump MCMC to incorporate model uncertainty into our 

inference problem and thus sample from the joint model and parameter posterior 

distribution. This would be useful to test, not only if various parameters should be included 

in the model, but also the structure of the model. For example, is it wise to multiply the 

sparks term by the susceptibility of farm i in (4.1) and (5.3), or should it be included without 

the susceptibility term? Due to the computational requirements of such a scheme, however, 

this would not be a trivial development.

Questions about the sensitivity of conclusions to the choice of variables, such as the Taylor 

series centre-points, will be addressed in future work that will also consider the related issue 

of model choice.

ILMs could be applied to a wide range of infectious diseases where data expressing spatial 

location, exposure, and removal time is available. There are obvious applications in other 

agricultural problems for both animals (e.g., avian flu in domestic poultry), or plants (e.g., 

citrus canker in trees) where individuals do not move. However, there appears to be no 

theoretical barrier to applying ILMs to situations where the individuals are mobile (e.g., 

human and wildlife diseases), as long as at least partial spatial location data are available 

over time. Neither does the infection kernel, κ(i, j), in (2.1) need to refer to a Euclidean 

distance kernel. As well as the possibility of using other distance metrics (e.g., road 

distance), some sort of contact measure could be used. For example, in a study of the 

transmission of a human epidemic around the globe, an infection kernel representing traffic 

flows between airports could be considered. This may have relevance to diseases such as 

SARS or influenza.

The vital issue of goodness-of-fit for infectious disease models, which does not fit as 

naturally into the Bayesian setting, is not addressed in this paper. However, it is a key area 

of research which the authors intend to address in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distance kernels for models PT and PB.
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Figure 2. 
Mean posterior farm susceptibility (SNψS) against number of animals: (a) under model PT; 

(b) under model PB.
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Figure 3. 
Mean posterior farm transmissibility (T NψT) against number of animals: (a) under model 

PT; (b) under model PB.
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Table 1

Means (with 95% HPDIs) of marginal posterior densities for parameters for models fitted to the UK 2001 

FMD epidemic data.

Parameter Model PT Model PB

b n/a −1.66 (−1.70, −1.62)

Ts 1.18 × 10−4 (0.21, 2.16) × 10−4 2.62 × 10−1 (0.64, 4.00) × 10−1

Tc 9.00 × 10−5 (2.40, 17.3) × 10−5 1.22 × 10−1 (0.23, 2.55) × 10−1

Ss 1.00 1.00

Sc 6.03 (4.38, 7.78) 7.14 (5.28, 9.07)

∈ −5.76 × 10−10 (−7.11, −4.40)×10−10 −2.45 × 10−10 (−3.16, −1.76) × 10−10

k0 n/a 1.85 × 10−5 (0.84, 2.93) × 10−5

δ0 n/a 719 (435, 1138)

ψT,s 0.113 (0.000, 0.249) 0.074 (0.000, 0.186)

ψT,c 0.304 (0.147, 0.471) 0.321 (0.139, 0.509)

ψS,s 0.908 (0.877, 0.941) 0.908 (0.879, 0.939)

ψS,c 0.887 (0.842, 0.934) 0.886 (0.844, 0.929)

λC 0.063 (0.053, 0.073) 0.035 (0.027, 0.043)
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