Skip to main content

Error-adaptive classifier boosting (EACB): Exploiting data-driven training for highly fault-tolerant hardware

Author(s): Wang, Z; Schapire, Robert; Verma, N

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11c22
Abstract: Technological scaling and system-complexity scaling have dramatically increased the prevalence of hardware faults, to the point where traditional approaches based on design margining are becoming un-viable. The challenges are exacerbated in embedded sensing applications due to constraints on system resources (energy, area). Given the importance of classification functions in such applications, this paper presents an architecture for overcoming faults within a classification processor. The approach employs machine learning for modeling not only complex sensor signals but also error manifestations due to hardware faults. Adaptive boosting is exploited in the architecture for performing iterative data-driven training. This enables the effects of faults in preceding iterations to be modeled and overcome during subsequent iterations. We demonstrate a system integrating the proposed classifier, capable of training its model entirely within the architecture by generating estimated training labels. FPGA experiments show that high fault rates (affecting >3% of all circuit nodes) occurring on >80% of the hardware can be overcome, restoring system performance to fault-free levels. © 2014 IEEE.
Publication Date: 1-Jan-2014
Citation: Wang, Z, Schapire, R, Verma, N. (2014). Error-adaptive classifier boosting (EACB): Exploiting data-driven training for highly fault-tolerant hardware. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 3884 - 3888. doi:10.1109/ICASSP.2014.6854329
DOI: doi:10.1109/ICASSP.2014.6854329
ISSN: 1520-6149
Pages: 3884 - 3888
Type of Material: Conference Article
Journal/Proceeding Title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.