Skip to main content

Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas

Author(s): Perkins, T. Alex; Metcalf, C. Jessica E.; Grenfell, Bryan T.; Tatem, Andrew J.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1m428
Abstract: Background Chikungunya is an emerging arbovirus that has caused explosive outbreaks in Africa and Asia for decades and invaded the Americas just over a year ago. During this ongoing invasion, it has spread to 45 countries where it has been transmitted autochthonously, infecting nearly 1.3 million people in total. Methods Here, we made use of weekly, country-level case reports to infer relationships between transmission and two putative climatic drivers: temperature and precipitation averaged across each country on a monthly basis. To do so, we used a TSIR model that enabled us to infer a parametric relationship between climatic drivers and transmission potential, and we applied a new method for incorporating a probabilistic description of the serial interval distribution into the TSIR framework. Results We found significant relationships between transmission and linear and quadratic terms for temperature and precipitation and a linear term for log incidence during the previous pathogen generation. The lattermost suggests that case numbers three to four weeks ago are largely predictive of current case numbers. This effect is quite nonlinear at the country level, however, due to an estimated mixing parameter of 0.74. Relationships between transmission and the climatic variables that we estimated were biologically plausible and in line with expectations. Conclusions Our analysis suggests that autochthonous transmission of Chikungunya in the Americas can be correlated successfully with putative climatic drivers, even at the coarse scale of countries and using long-term average climate data. Overall, this provides a preliminary suggestion that successfully forecasting the future trajectory of a Chikungunya outbreak and the receptivity of virgin areas may be possible. Our results also provide tentative estimates of timeframes and areas of greatest risk, and our extension of the TSIR model provides a novel tool for modeling vector-borne disease transmission.
Electronic Publication Date: 2015
Citation: Perkins, T. Alex, Metcalf, C. Jessica E., Grenfell, Bryan T., Tatem, Andrew J. (2015). Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas. PLoS Currents, 10.1371/currents.outbreaks.a4c7b6ac10e0420b1788c9767946d1fc
DOI: doi:10.1371/currents.outbreaks.a4c7b6ac10e0420b1788c9767946d1fc
EISSN: 2157-3999
Pages: 1 - 26
Type of Material: Journal Article
Journal/Proceeding Title: PLoS Currents
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.