Skip to main content

An Optimal Policy for Patient Laboratory Tests in Intensive Care Units

Author(s): Cheng, Li-Fang; Prasad, Niranjani; Engelhardt, Barbara E

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1zk17
Abstract: Laboratory testing is an integral tool in the management of patient care in hospitals, particularly in intensive care units (ICUs). There exists an inherent trade-off in the selection and timing of lab tests between considerations of the expected utility in clinical decision-making of a given test at a specific time, and the associated cost or risk it poses to the patient. In this work, we introduce a framework that learns policies for ordering lab tests which optimizes for this trade-off. Our approach uses batch off-policy reinforcement learning with a composite reward function based on clinical imperatives, applied to data that include examples of clinicians ordering labs for patients. To this end, we develop and extend principles of Pareto optimality to improve the selection of actions based on multiple reward function components while respecting typical procedural considerations and prioritization of clinical goals in the ICU. Our experiments show that we can estimate a policy that reduces the frequency of lab tests and optimizes timing to minimize information redundancy. We also find that the estimated policies typically suggest ordering lab tests well ahead of critical onsets—such as mechanical ventilation or dialysis—that depend on the lab results. We evaluate our approach by quantifying how these policies may initiate earlier onset of treatment.
Publication Date: 2019
Citation: Cheng, Li-Fang, Niranjani Prasad, and Barbara E. Engelhardt. "An Optimal Policy for Patient Laboratory Tests in Intensive Care Units." In Pacific Symposium on Biocomputing (2019): pp. 320-331. doi:10.1142/9789813279827_0029
DOI: 10.1142/9789813279827_0029
Pages: 320 - 331
Language: eng
Type of Material: Conference Article
Journal/Proceeding Title: Pacific Symposium on Biocomputing
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.