Skip to main content

Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [invited]

Author(s): Sitawarin, C; Jin, W; Lin, Z; Rodriguez, Alejandro W

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1zc5m
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSitawarin, C-
dc.contributor.authorJin, W-
dc.contributor.authorLin, Z-
dc.contributor.authorRodriguez, Alejandro W-
dc.date.accessioned2021-10-08T20:16:51Z-
dc.date.available2021-10-08T20:16:51Z-
dc.date.issued2018en_US
dc.identifier.citationSitawarin, C, Jin, W, Lin, Z, Rodriguez, AW. (2018). Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [invited]. Photonics Research, 6 (B82 - B89. doi:10.1364/PRJ.6.000B82en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1zc5m-
dc.description.abstractTypically, photonic waveguides designed for nonlinear frequency conversion rely on intuitive and established principles, including index guiding and bandgap engineering, and are based on simple shapes with high degrees of symmetry. We show that recently developed inverse-design techniques can be applied to discover new kinds of microstructured fibers and metasurfaces designed to achieve large nonlinear frequency-conversion efficiencies. As a proof of principle, we demonstrate complex, wavelength-scale chalcogenide glass fibers and gallium phosphide three-dimensional metasurfaces exhibiting some of the largest nonlinear conversion efficiencies predicted thus far, e.g., lowering the power requirement for third-harmonic generation by 104 and enhancing second-harmonic generation conversion efficiency by 107. Such enhancements arise because, in addition to enabling a great degree of tunability in the choice of design wavelengths, these optimization tools ensure both frequency- and phase-matching in addition to large nonlinear overlap factors.en_US
dc.format.extentB82 - B89en_US
dc.language.isoen_USen_US
dc.relation.ispartofPhotonics Researchen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleInverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [invited]en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1364/PRJ.6.000B82-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [invited].pdf1.41 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.