Skip to main content

Fftnet: A Real-Time Speaker-Dependent Neural Vocoder

Author(s): Jin, Zeyu; Finkelstein, Adam; Mysore, Gautham J; Lu, Jingwan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xn8j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJin, Zeyu-
dc.contributor.authorFinkelstein, Adam-
dc.contributor.authorMysore, Gautham J-
dc.contributor.authorLu, Jingwan-
dc.date.accessioned2021-10-08T19:45:35Z-
dc.date.available2021-10-08T19:45:35Z-
dc.date.issued2018en_US
dc.identifier.citationJin, Zeyu, Adam Finkelstein, Gautham J. Mysore, and Jingwan Lu. "Fftnet: A Real-Time Speaker-Dependent Neural Vocoder." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018): pp. 2251-2255. doi:10.1109/ICASSP.2018.8462431en_US
dc.identifier.urihttps://pixl.cs.princeton.edu/pubs/Jin_2018_FAR/fftnet-jin2018.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1xn8j-
dc.description.abstractWe introduce FFTNet, a deep learning approach synthesizing audio waveforms. Our approach builds on the recent WaveNet project, which showed that it was possible to synthesize a natural sounding audio waveform directly from a deep convolutional neural network. FFTNet offers two improvements over WaveNet. First it is substantially faster, allowing for real-time synthesis of audio waveforms. Second, when used as a vocoder, the resulting speech sounds more natural, as measured via a “mean opinion score” test.en_US
dc.format.extent2251 - 2255en_US
dc.language.isoen_USen_US
dc.relation.ispartof2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)en_US
dc.rightsAuthor's manuscripten_US
dc.titleFftnet: A Real-Time Speaker-Dependent Neural Vocoderen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/ICASSP.2018.8462431-
dc.identifier.eissn2379-190X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
FftnetRealTimeNeuralVocoder.pdf653.05 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.