Fftnet: A Real-Time Speaker-Dependent Neural Vocoder
Author(s): Jin, Zeyu; Finkelstein, Adam; Mysore, Gautham J; Lu, Jingwan
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xn8j
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jin, Zeyu | - |
dc.contributor.author | Finkelstein, Adam | - |
dc.contributor.author | Mysore, Gautham J | - |
dc.contributor.author | Lu, Jingwan | - |
dc.date.accessioned | 2021-10-08T19:45:35Z | - |
dc.date.available | 2021-10-08T19:45:35Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.citation | Jin, Zeyu, Adam Finkelstein, Gautham J. Mysore, and Jingwan Lu. "Fftnet: A Real-Time Speaker-Dependent Neural Vocoder." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018): pp. 2251-2255. doi:10.1109/ICASSP.2018.8462431 | en_US |
dc.identifier.uri | https://pixl.cs.princeton.edu/pubs/Jin_2018_FAR/fftnet-jin2018.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1xn8j | - |
dc.description.abstract | We introduce FFTNet, a deep learning approach synthesizing audio waveforms. Our approach builds on the recent WaveNet project, which showed that it was possible to synthesize a natural sounding audio waveform directly from a deep convolutional neural network. FFTNet offers two improvements over WaveNet. First it is substantially faster, allowing for real-time synthesis of audio waveforms. Second, when used as a vocoder, the resulting speech sounds more natural, as measured via a “mean opinion score” test. | en_US |
dc.format.extent | 2251 - 2255 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Fftnet: A Real-Time Speaker-Dependent Neural Vocoder | en_US |
dc.type | Conference Article | en_US |
dc.identifier.doi | 10.1109/ICASSP.2018.8462431 | - |
dc.identifier.eissn | 2379-190X | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FftnetRealTimeNeuralVocoder.pdf | 653.05 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.