Deep Learning with Hierarchical Convolutional Factor Analysis
Author(s): Chen, Bo; Polatkan, Gungor; Sapiro, Guillermo; Blei, David M.; Dunson, David; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xn59
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Bo | - |
dc.contributor.author | Polatkan, Gungor | - |
dc.contributor.author | Sapiro, Guillermo | - |
dc.contributor.author | Blei, David M. | - |
dc.contributor.author | Dunson, David | - |
dc.contributor.author | Carin, Lawrence | - |
dc.date.accessioned | 2020-04-01T13:21:28Z | - |
dc.date.available | 2020-04-01T13:21:28Z | - |
dc.date.issued | 2013-08 | en_US |
dc.identifier.citation | Chen, Bo, Gungor Polatkan, Guillermo Sapiro, David Blei, David Dunson, and Lawrence Carin. "Deep learning with hierarchical convolutional factor analysis." IEEE transactions on pattern analysis and machine intelligence 35, no. 8 (2013): 1887-1901. doi:10.1109/TPAMI.2013.19 | en_US |
dc.identifier.issn | 0162-8828 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1xn59 | - |
dc.description.abstract | Unsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis that explicitly exploit the convolutional nature of the expansion. To address large-scale and streaming data, an online version of VB is also developed. The number of dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature. | en_US |
dc.format.extent | 1887 - 1901 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | IEEE Transactions on Pattern Analysis and Machine Intelligence | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Deep Learning with Hierarchical Convolutional Factor Analysis | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1109/TPAMI.2013.19 | - |
dc.identifier.eissn | 1939-3539 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Blei - Deep Learning with Hierarchical.pdf | 3.77 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.