Skip to main content

Deep Learning with Hierarchical Convolutional Factor Analysis

Author(s): Chen, Bo; Polatkan, Gungor; Sapiro, Guillermo; Blei, David M.; Dunson, David; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xn59
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Bo-
dc.contributor.authorPolatkan, Gungor-
dc.contributor.authorSapiro, Guillermo-
dc.contributor.authorBlei, David M.-
dc.contributor.authorDunson, David-
dc.contributor.authorCarin, Lawrence-
dc.date.accessioned2020-04-01T13:21:28Z-
dc.date.available2020-04-01T13:21:28Z-
dc.date.issued2013-08en_US
dc.identifier.citationChen, Bo, Gungor Polatkan, Guillermo Sapiro, David Blei, David Dunson, and Lawrence Carin. "Deep learning with hierarchical convolutional factor analysis." IEEE transactions on pattern analysis and machine intelligence 35, no. 8 (2013): 1887-1901. doi:10.1109/TPAMI.2013.19en_US
dc.identifier.issn0162-8828-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1xn59-
dc.description.abstractUnsupervised multilayered (“deep”) models are considered for imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis that explicitly exploit the convolutional nature of the expansion. To address large-scale and streaming data, an online version of VB is also developed. The number of dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature.en_US
dc.format.extent1887 - 1901en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.rightsAuthor's manuscripten_US
dc.titleDeep Learning with Hierarchical Convolutional Factor Analysisen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1109/TPAMI.2013.19-
dc.identifier.eissn1939-3539-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Blei - Deep Learning with Hierarchical.pdf3.77 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.