Skip to main content

On the mixing time of the Diaconis-Gangolli random walk on contingency tables over Z/qZ

Author(s): Nestoridi, Evita; Nguyen, Oanh

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xd0qx7n
Abstract: The Diaconis-Gangolli random walk is an algorithm that generates an almost uniform random graph with prescribed degrees. In this paper, we study the mixing time of the Diaconis-Gangolli random walk restricted on n x n contingency tables over Z/qZ. We prove that the random walk exhibits cutoff at n(2)/4(1-cos 2 pi/q) log n, when log q = o(root log n/log log n).
Publication Date: May-2020
Citation: Nestoridi, Evita, Nguyen, Oanh. (2020). On the mixing time of the Diaconis-Gangolli random walk on contingency tables over Z/qZ. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56 (983 - 1001. doi:10.1214/19-AIHP991
DOI: doi:10.1214/19-AIHP991
ISSN: 0246-0203
Pages: 983 - 1001
Language: English
Type of Material: Journal Article
Journal/Proceeding Title: ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.