Skip to main content

On the mixing time of the Diaconis-Gangolli random walk on contingency tables over Z/qZ

Author(s): Nestoridi, Evita; Nguyen, Oanh

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1xd0qx7n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNestoridi, Evita-
dc.contributor.authorNguyen, Oanh-
dc.date.accessioned2023-12-27T18:46:04Z-
dc.date.available2023-12-27T18:46:04Z-
dc.date.issued2020-05en_US
dc.identifier.citationNestoridi, Evita, Nguyen, Oanh. (2020). On the mixing time of the Diaconis-Gangolli random walk on contingency tables over Z/qZ. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56 (983 - 1001. doi:10.1214/19-AIHP991en_US
dc.identifier.issn0246-0203-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1xd0qx7n-
dc.description.abstractThe Diaconis-Gangolli random walk is an algorithm that generates an almost uniform random graph with prescribed degrees. In this paper, we study the mixing time of the Diaconis-Gangolli random walk restricted on n x n contingency tables over Z/qZ. We prove that the random walk exhibits cutoff at n(2)/4(1-cos 2 pi/q) log n, when log q = o(root log n/log log n).en_US
dc.format.extent983 - 1001en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUESen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn the mixing time of the Diaconis-Gangolli random walk on contingency tables over Z/qZen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/19-AIHP991-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1808.06157.pdf477.69 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.