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Abstract

The Diaconis–Gangolli random walk is an algorithm that generates an almost uniform ran-
dom graph with prescribed degrees. In this paper, we study the mixing time of the Diaconis–
Gangolli random walk restricted on n × n contingency tables over Z/qZ. We prove that the

random walk exhibits cutoff at n2

4(1−cos 2π
q )

log n, when log q = o
( √

logn
log logn

)
.

1 Introduction

Random graphs are an important object of study in Combinatorics, Computer Science, and Prob-
ability. An (n, n) bipartite graph is a graph with a left vertex set V = {v1, . . . , vn} and a right
vertex set U = {u1, . . . , un} and the only edges are the edges that connect a vertex in V with a
vertex in U . Consider the problem of generating a random bipartite graph with prescribed degrees.
How do we choose uniformly at random such an (n, n) bipartite graph?

Diaconis and Gangolli [30] proposed the following randomized algorithm. Start with a bipartite
graph G0 that has the desired vertex degrees at time t = 0. At time t, from the graph Gt−1,
choose two pairs of vertices vi 6= vj in V and uk 6= ul in U uniformly at random. We delete the
already existing edges between vi, vj and uk, ul and we draw the remaining edges between them
to get G′t. If the result is not a graph with the prescribed degrees, then Gt is set to be Gt−1.
Otherwise, Gt := G′t. In the language of random graphs, such a procedure is also known as the
simple switching method developed by McKay and Wormald and many others (see, for example,
the survey [46] and the references therein).
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Two main questions concerning random bipartite graph with prescribed degrees are: what is their
number and how long does the Diaconis–Gangolli algorithm take to produce such a random bipartite
graph?
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In this paper we consider a more specialized version of the Diaconis–Gangolli algorithm. To start
with a simple example, on Z/2Z, consider the problem of generating a random bipartite graph in
which every vertex has an even degree. At time t = 0, we start with the empty graph G0. At
time t, the Diaconis–Gangolli algorithm suggests that from the graph Gt−1, choose two pairs of
vertices vi 6= vj in V and uk 6= ul in U uniformly at random. Then, replace the subgraph induced
by restricting Gt−1 on these four vertices by its complement.
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Our main theorem below asserts that at time t ≥ n2

8 log n + 10cn2
√

log n log logn, the (random)
graph Gt is distributed almost uniformly: the L1 distance between the distribution of Gt and the
uniform distribution on the bipartite graphs whose all degrees are even is at most e−c.

Similarly, one can use the same algorithm to generate a uniform bipartite graph with prescribed
degree parities, say, the vertices in A ⊂ V and B ⊂ U have odd degrees and the rest have even
degrees. The only difference is in choosing the starting point G0. Instead of starting at the empty
graph, one can start at any graph that satisfies the prescribed degree parities.

Associate each bipartite graph with its adjacency matrix A, which is an n× n matrix whose (i, j)
entry is 1 if (vi, uj) is an edge and 0 otherwise. The requirement that each vertex has a specific
degree parity means that we require A to have given row sums and column sums in Z/2Z.

More generally, we consider matrices with prescribed row and column sums in Z/qZ for positive
integers q.

Definition 1.1. A contingency table over Z/qZ is an n×n matrix with entries in Z/qZ, with fixed
row sums (r1, . . . , rn) ∈ (Z/qZ)n and fixed column sums (c1, . . . , cn) ∈ (Z/qZ)n. Note that for the
existence of such matrices, we need that

∑n
i=1 ri =

∑n
j=1 cj.

The Diaconis–Gangolli random walk on n × n contingency tables over Z/qZ goes as follows. Pick
two distinct rows and two distinct columns at random. Then, we look at the equilateral that these
rows and columns form. We flip a fair coin. If heads we add

T =

(
−1 1
1 −1

)
to the corners of the equilateral. If tails, then we add −T to the corners of the equilateral.

Let Ω be the set of all contingency tables with the prescribed degrees in Z/qZ and let At be the
contingency table after t steps of the process. For A,B ∈ Ω, let P tA(B) be the probability of
moving from A to B after t steps. The sequence of probability measures P tA converges to the
uniform measure π on Ω, as t→∞, with respect to the total variation distance

d(t) := max
A∈Ω
‖P tA − π‖T.V. = max

A∈Ω

{
1

2

∑
B∈Ω

|P tA(B)− π(B)|

}
. (1)

A question which arises naturally is to determine the rate of convergence to stationarity of the
random walk, which is quantified by the mixing time

tmix(ε) = min
{
t ∈ N : d(t) ≤ ε

}
. (2)



Our main result is the following.

Theorem 1.2. Let n ≥ 4 and q ≥ 2. For the Diaconis–Gangolli walk on n× n contingency tables
with entries in Z/qZ, with row sums (r1, . . . , rn) mod q and column sums (c1, . . . , cn) mod q, we
have that

(a) (Upper bound) If t ≥ n2

4
(

1−cos 2π
q

) log n+ n2(
1−cos 2π

q

)c log log(16n)
√

log n log q, then

d(t) ≤ q−c,

for all c ≥ 640
log log(16n) .

(b) (Lower bound) If t ≤ n2

4
(

1−cos 2π
q

) log n− n2

4
(

1−cos 2π
q

)(c+ 12) log q, then

d(t) ≥ 1− q−c,

for all c ≥ 0.

Set tn,q = n2

4
(

1−cos 2π
q

) log n and ∆n,q = n2(
1−cos 2π

q

) log log(16n)
√

log n log q. Theorem 1.2 says that

over Z/qZ, the random walk mixes at time tn,q with window of order at most ∆n,q, i.e.

lim
c→∞

lim
n→∞

d (tn,q − c∆n,q) = 1 1

and
lim
c→∞

lim
n→∞

d (tn,q + c∆n,q) = 0.

If log q = o
( √

logn
log logn

)
then ∆n,q = o(tn,q). In other words, the random walk exhibits cutoff, a sharp

transition from d(t) ≈ 1 to d(t) ≈ 0.

If n = 2, then the lazy random walk on contingency tables over Z/qZ is the same as the lazy
random walk on Z/qZ, which is known to not have cutoff [27].

1.1 Literature

Contingency tables are used in statistics, in order to display the results of tests and surveys. Diaco-
nis and Efron ([28], [29]) developed the conditional volume test, which is a method for performing
tests of great importance in such tables. The Diaconis-Efron test provides strong motivation for
sampling a contingency table with given row and column sums uniformly at random.

Diaconis, Gangolli [30] and Diaconis and Saloff-Coste (see page 373 of [33]) were the first ones to
introduce Markov chains for sampling contingency tables, although it is mentioned in [30] that this
chain has been used by practitioners. Diaconis and Saloff-Coste proved that if N =

∑
ci =

∑
ri

and the number of rows and columns is fixed then the mixing time is of order N2. Hernek [37]
considered the case when the table has two rows and proved that the same chain mixes in time
polynomial in the number of columns and N . Chung, Graham, and Yau [22] proved that a modified
version of the Diaconis and Saloff-Coste chain converges in time polynomial in N , the number of
rows, and the number of columns, given that N is large.

1The lower bound of Theorem 1.2 is in fact stronger than this.



Dyer, Kannan, and Mount [35] found a new way to sample contingency tables using polytopes
which provided the first truly polynomial-time algorithm (polynomial in the number of rows, the
number of columns, and the logarithm of N). Later, Morris [43] refined their answers.

Dyer and Greenhill [34] applied coupling to get pre-cutoff at n2 logN for the case of 2×2 heat-bath
chain, a different Markov chain on 2×n contingency tables. Matsui, Matsui and Ono [39] extended
the result of [34] for 2× 2× . . .× 2×J contingency tables. Cryan, Dyer, Goldberg, Jerrum, Martin
[24] extended the result of [34] for the case where there is a constant number of rows.

A closely related problem to the mixing time is the enumerating problem. It is worth mentioning
that there has been a rich literature in enumerating contingency tables ([2], [3], [4], [6],[5], [9], [7],
[10], [1], [25] [19], [36], [44]) and studying algorithms to sample contingency tables or approximate
their number ( [17], [21], [20], [15], [13], [12], [14], [23], [33]). On a different note, Blanchet and
Stauffer [16] provide a necessary and sufficient condition so that the configuration model outputs
a binary contingency table with probability bounded away from 0 and N →∞.

Enumerating the graphs with a given degree sequence also has a vast literature and important
applications. See for example, Bender and Canfield [11], Bollobás [18] and Wormald [46]. McKay
and Wormald used the method of switchings to obtain in [41] an asymptotic formula for the number
of labeled graphs with a given degree sequence in the case where the average degree is o(

√
n). See

also [42], [40], [8] for other ranges of the degrees. In a recent breakthrough, Liebenau and Wormald
[38] obtained, among other things, the asymptotic number of d-regular graphs on n vertices for all
d.

1.2 There is no Markovian coupling that could give Theorem 1.2

Coupling is a powerful technique to achieve upper bounds on the mixing time. This section is
dedicated to proving that there is no Markovian coupling that would give optimal mixing time
bounds.

Proposition 1.3. Let q ≥ 2 and let T be a Markovian coupling time for the Diaconis–Gangolli
walk in Theorem 1.2, then

P
(
T >

n3

100

)
≥ 1

2
.

Proof. Each move of the walk is performed with probability 1

2(n2)
2 for q ≥ 3 and 1

(n2)
2 for q = 2.

At each step we change four entries of the matrix. If there are two copies of the Markov chain
(C1

t ), (C2
t ), then we claim that

P
(
C1
t = C2

t |C1
t−1 6= C2

t−1

)
≤ 6n(

n
2

)2 , (3)

for every t. Notice that if C1
t−1 6= C2

t−1 then because of the degree restrictions, C1
t−1 and C2

t−1 have
to differ in at least 4 coordinates.

If C1
t−1 6= C2

t−1 and C1
t−1, C

2
t−1 differ in at least 9 entries, then (3) holds because the left hand side

of (3) is zero. If C1
t−1, C

2
t−1 differ in at least 5 vertices, the above probability is at most 6

(n2)
2 . If

they differ in four entries a, b, c, d (which is the minimum number of entries they can differ by), the
only way to resolve these differences, without creating new differences, is if we change a, b in C1

t−1,
and c, d in C2

t−1 (or any other permutation of these letters). The other side of the box should be the



same on the two chains so that we don’t create new mismatched coordinates. The total probability

of doing such a move is at most
(42)n

(n2)
2 , which gives the right hand side term.

We will couple T with a geometric random variable R with probability of success p = 6n/
(
n
2

)2
so

that T ≥ R always. We have

P
(
R ≥ 1

3p

)
=
∑
k≥ 1

3p

(1− p)k−1p ≥ (1− p)1/(3p) ≥ 1

2
.

Thus, P
(
T ≥ 1

3p

)
≥ P

(
R ≥ 1

3p

)
≥ 1

2 completing the proof of the statement.

If T is a coupling time then
d(t) ≤ P(T > t) ,

and, therefore Proposition 1.3 says that we cannot hope for a Markovian coupling that will give
the upper bound of Theorem 1.2 even for q = 2.

2 The contingency table walk over Z/qZ as a random walk on a
group

In this section, we explain how linear algebra and representation theory can be used to prove
Theorem 1.2.

Let Ai,j,k,l denote the n×n matrix that has ones on the (i, k), (j, l) positions, −1 on the (i, l), (j, k)
positions and zeros else where. If at time t the Markov chain is at a contingency table Bt, then we
choose matrices of the form Ai,j,k,l and we add them to Bt. Let At+1 be the matrix we choose to
add to Bt at time t+ 1. Then, we have that

Bt+1 = At+1 +Bt = B0 +A1 . . .+At+1

So, instead of studying the Markov chain (Bt), we can equivalently study the process Ct, where

Ct := A1 + . . .+At+1.

The advantage of studying Ct is that Ct is a random walk on the group G, which consists of n× n
contingency tables with entries over Z/qZ and row sums and column sums zero. This is summarized
more formally in the following lemma.

Lemma 2.1. For the processes (Bt) and (Ct), we have that

‖Px(Bt ∈ ·)− π‖T.V. = ‖P0(Ct ∈ ·)− U‖T.V.,

where x ∈ Ω, π is the uniform measure on Ω and U is the uniform measure on G.

From now on, we will study the random walk Ct on G. The next lemma characterizes G.

Lemma 2.2. The group G of n× n contingency tables with entries over Z/qZ and row sums and
column sums zero, satisfies G ∼ (Z/qZ)(n−1)2 .



Proof. G is a vector subspace of (Z/qZ)n×n over Z/qZ. In fact, G ∼ (Z/qZ)n×n/A where A is the
subgroup of (Z/qZ)n×n generated by 2n− 1 relations, that are setting 2n− 1 rows and columns to
be equal to zero. Therefore, dimZ/qZG = (n− 1)2 and this finishes the proof.

Let Bi,j be the matrix that has ones in positions (i, j), (i+1, j), −1 in positions (i, j+1), (i+1, j+1)
and zero everywhere else. To diagonalize the matrix P we will need the fact that {Bi,j}n−1

i,j=1 is a
basis for G. We can see that they are a basis, because they are linearly independent and there are
(n− 1)2 of them.

Definition 2.3. Let Ãi,j,k,l ∈ (Z/qZ)(n−1)×(n−1) be the matrix that has ones on all positions (a, c)
that satisfy i ≤ a ≤ j and k ≤ c ≤ l and everywhere else zero.

Since

Ai,j,k,l =

j−1∑
a=i

l−1∑
c=k

Ba,c,

the matrix Ãi,j−1,k,l−1 is the coordinates of Ai,j,k,l with respect to the basis (Bi,j) of G. Similarly,
we associate each element of G with its coordinates with respect to the basis (Bij).

2.1 Fourier Transform and the `2 bound

Let X be a finite group and let S be a symmetric set of generators.

Definition 2.4. Let P be the uniform measure on S. Let ρ be a representation of X. Define the
Fourier transform of ρ with respect to P to be

P̂ (ρ) =
∑
s∈S

P (s)ρ(s).

Theorem 6 of [26, Chapter 3E] says that the Fourier transforms of the irreducible representations
of G with respect to P give all of the eigenvalues of P, each one appearing with multiplicity being
the dimension of the corresponding representation. The following lemma explains how to use the
irreducible representations of X to bound the mixing time of the Markov chain generated by P . It
was first used in [31] and the rigorous proof can be found in [26, Chapter 3].

Lemma 2.5 (Upper bound lemma). For the random walk on X generated by P , we have that

4‖P tid − π‖2T.V. ≤
∗∑
dρ(P̂ (ρ)P̂ ∗(ρ))t, (4)

where dρ is the dimension of a representation ρ and the sum is over all irreducible representations
ρ of X, but the trivial one.

Apply these results to X = G and S being the set of all ±Ai,j,k,l; or equivalently, X = (Z/qZ)(n−1)2

and S being the set of all ±Ãi,j,k,l. Let y, g ∈ (Z/qZ)(n−1)2 , define

ρy(g) = e
2πi<g,y>

q ,

where < g, y >=
∑(n−1)2

i=1 giyi is the inner product of y, g. Each ρy is one dimensional, therefore it
is irreducible. As explained in Lemma 2 of [26], we have that∑

d2
i = q(n−1)2 ,



where the sum is taken over all irreducible representations and di is the dimension of each irreducible
representation. Therefore, the set {ρy, y ∈ (Z/qZ)(n−1)2} consists of all irreducible representations
of G.

The following proposition computes the Fourier transform of each irreducible ρy with respect to P .

Lemma 2.6. Let y ∈ (Z/qZ)(n−1)2, then

P̂ (ρy) =
1(
n
2

)2 ∑
i,j,k,l

cos
2π < y, Ãi,j,k,l >

q

where Ãi,j,k,l is defined in Definition 2.3.

Proof. The proof of the lemma follows from the definition of ρy and the fact that

exp

(
2πi < Ãi,j,k,l, y >

q

)
+ exp

(
−2πi < Ãi,j,k,l, y >

q

)
= 2 cos

2π < y, Ãi,j,k,l >

q
.

Applying Lemmas 2.5 and 2.6, we obtain the following bound for the random walk (Ct) on G and
the uniform measure U on G as in Lemma 2.1.

‖P0(Ct ∈ ·)− U‖2T.V. ≤
∑

y∈G\{0}

P̂ (ρy)
2t =

∑
y∈G\{0}

 1(
n
2

)2 ∑
i,j,k,l

cos
2π < y, Ãi,j,k,l >

q

2t

. (5)

2.2 Bounding negative eigenvalues

In this section, we show that the negative eigenvalues are bounded away from minus one and,
therefore, the don’t contribute much to the right hand side of (4).

Let S = {±Ai,j,k,l : 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n} denote the set of generators of the Diaconis–
Gangolli random walk of interest over Z/qZ. Let P be the transition matrix and Q = 1

2(I + P )

where I is the identity matrix. Notice that since all the eigenvalues P̂ (ρy) of P lie in [−1, 1], we
have that all the eigenvalues of Q are non-negative, real numbers.

Let f : G→ R be a function and let

F(f, f) =
∑
x,y∈G

(f(x) + f(y))2P (x, y) and F̃(f, f) =
∑
x,y∈G

(f(x) + f(y))2Q(x, y). (6)

We are going to use Lemma 4 of [31] to bound the negative eigenvalues of P from below. For
completeness, we rewrite the statement of Lemma 4 of [31] for our case.

Lemma 2.7 ([31], Lemma 4). If F̃(f, f) ≤ A∗F(f, f) for every f : G→ R, then

P̂ (ρy) ≥ −1 +
1

A∗
,

for every y ∈ (Z/qZ)(n−1)2.



We are going to use Lemma 2.7 to prove the following bound on the eigenvalues of P .

Lemma 2.8. For the Diaconis–Gangolli random walk on contingency tables over Z/qZ, we have
that

P̂ (ρy) ≥ −
28

29
,

for every y ∈ (Z/qZ)(n−1)2.

Proof. The proof is based on the technique of “flows” as presented in Theorem 2.3 of [32]. For
completion, we explain how this method works.

Notice that for every f : G→ R, we have that

F̃(f, f) = 2
∑
x∈G

f(x)2 +
1

2

∑
x 6=y∈G

(f(x) + f(y))2P (x, y)

= 2
∑
x∈G

f(x)2 +
1

2
F(f, f). (7)

To bound the term
∑

x∈G f(x)2, we observe that for n ≥ 3 and for any k < b < l and i < j,

Ai,j,k,l = Ai,j,k,b +Ai,j,b,l, (8)

which can be illustrated for the case i = 1 = k, j = 2 = b and l = 3 as 1 0 −1
−1 0 1

. . .

 =

 1 −1 0
−1 1 0

. . .

+

 0 1 −1
0 −1 1

. . .

 .
Let x ∈ G and let f : G→ R. Using equation (8), we have

2f(x) = [f(x) + f(x+Ai,j,k,b)]− [f(x+Ai,j,k,b) + f(x+Ai,j,k,b +Ai,j,b,l)]+[f(x+Ai,j,k,l) + f(x)] .

Applying Cauchy-Schwartz gives

4

3
f(x)2 ≤ [f(x) + f(x+Ai,j,k,b)]

2+[f(x+Ai,j,k,b) + f(x+Ai,j,k,b +Ai,j,b,l)]
2+[f(x+Ai,j,k,l) + f(x)]2 .

Thus, by averaging,

f(x)2 ≤ 3

4
(
n
2

)(
n
3

) ∑
i<j;k<b<l

{
[f(x) + f(x+Ai,j,k,b)]

2 + [f(x+Ai,j,k,b) + f(x+Ai,j,k,b +Ai,j,b,l)]
2

+ [f(x+Ai,j,k,l) + f(x)]2
}
.

Using the identities P (x, x+ g) = 1
|S|1g∈S , |S| =

(
n
2

)2
if q = 2 and |S| = 2

(
n
2

)2
if q > 2, we get∑

x∈G
f(x)2 ≤ 3

4
(
n
2

)(
n
3

) ∑
x∈G

∑
i<j;k<b<l

{
[f(x) + f(x+Ai,j,k,b)]

2

+ [f(x+Ai,j,k,b) + f(x+Ai,j,k,b +Ai,j,b,l)]
2 + [f(x+Ai,j,k,l) + f(x)]2

}
≤ 9n

4
(
n
2

)(
n
3

) ∑
x∈G,g∈S

(f(x) + f(x+ g))2 ≤
18n

(
n
2

)
4
(
n
3

) ∑
x∈G,g∈S

(f(x) + f(x+ g))2P (x, x+ g)

≤ 14
∑

x∈G,g∈S
(f(x) + f(x+ g))2P (x, x+ g). (9)



Equation (7) and (9) give that

F̃(f, f) ≤ 28F(f, f) +
1

2
F(f, f) ≤ 29F(f, f)

and then, Lemma 2.7 for A∗ = 29 gives that

P̂ (ρy) ≥ −
28

29
,

for every y ∈ (Z/qZ)(n−1)2 .

3 Proof of Theorem 1.2

3.1 Proof of the lower bound

For the proof of the lower bound, we will use Wilson’s lemma.

Lemma 3.1 (Lemma 5, [45]). Let ε,R be positive numbers and 0 < γ < 2 −
√

2. Let F : X → R
be a function on the state space X of a Markov chain (Ct) such that

E[F (Ct+1)|Ct)] = (1− γ)F (Ct), E
[
[F (Ct)− F (Ct−1)]2 |Ct

]
≤ R,

and

t ≤
log maxx∈X F (x) + 1

2 log(γε/(4R))

− log(1− γ)
.

Then the total variation distance from stationarity at time t is at least 1− ε.

Proof of the lower bound of Theorem 1.2. As in Definition 2.3 and the discussion that follows, we
represent each element of G as an (n− 1)× (n− 1) matrix which is its coordinates with respect to
the basis (Bij) of G.

Let Da,b be the (n− 1)× (n− 1) matrix with entries at (2a− 1, 2b− 1), (2a, 2b) equal to 1 and at
(2a, 2b − 1), (2a − 1, 2b) equal to −1, while all the other entries are zero. Theorem 6 of Chapter

3E of [26] says that the functions Ga,b(x) = cos
(

2π<x,Da,b>
q

)
are eigenfunctions of the transition

matrix P . To see this, consider

D1,1 =


1 −1 0 . . .
−1 1 0 . . .
0 0 0 . . .

. . . . . .


We have that

G1,1(C) = cos

(
2π(C(1, 1)− C(1, 2)− C(2, 1) + C(2, 2))

q

)
.

We can only change the value of G1,1(Ct) if we do a move that affects exactly one of the following
entries Ct(1, 1), Ct(1, 2), Ct(2, 1) and Ct(2, 2). For example, the moves that change only the entry
Ct(2, 2) correspond to Ãi,j,k,l, as defined in Definition 2.3, for which the (2, 2) entry is the left corner



of the rectangle formed by ones. There are (n − 2)2 such Ãi,j,k,l. Using this observation, direct
calculation gives

E[G1,1(Ct)|Ct−1] =

(
1− 4

n2
+

4

n2
cos

(
2π

q

))
G1,1(Ct−1).

Similarly, it holds for any Ga,b that

E[Ga,b(Ct)|Ct−1] =

(
1− 4

n2
+

4

n2
cos

(
2π

q

))
Ga,b(Ct−1). (10)

Let

F (x) =

bn−1
2
c∑

a,b=0

Ga,b.

Then, we have that maxF = F (0) = bn−1
2 c

2 and (10) gives that

E[F (Ct)|Ct−1] =

(
1− 4

n2
+

4

n2
cos

(
2π

q

))
F (Ct−1). (11)

Finally, we have that
E
[
(F (Ct)− F (Ct−1))2|Ct−1

]
≤ 64. (12)

This is because every move Ãi,j,k,l that we might choose to make, affects the Ga,b who share a
unique one with Ãi,j,k,l. For example,

Ã =


1 1 1 0 . . .
1 1 1 0 . . .
1 1 1 0 . . .
0 0 0 0 . . .

. . . . . .


fixes all Ga,b, but G2,2. Therefore, every move that we make can affect at most four Ga,b. Thus,
|F (Ct)− F (Ct−1)| ≤ 8 surely and so E

[
(F (Ct)− F (Ct−1))2|Ct−1

]
≤ 64.

Using equations (10) and (12) for n ≥ 4, we have that γ = 4
n2

(
1− cos 2π

q

)
≤ 1

2 < 2 −
√

2 and

R = 64. Since 1
− log(1−γ) ≥

1
γ − 1, Lemma 3.1 asserts that if

t ≤
(

1

γ
− 1

)
log
(
F (0)γ1/2ε1/2R−1/2/2

)
then

d(t) ≥ 1− ε.

Writing ε = q−c and performing routine algebraic manipulations, we get that if

t ≤ n2

4
(

1− cos 2π
q

) log n− n2 log q

4
(

1− cos 2π
q

)(c+ 12),

then d(t) ≥ 1− q−c as desired.



3.2 Proof of the upper bound of Theorem 1.2

By (1) and Lemma 2.1, we get

d(t)2 ≤ ‖P0(Ct ∈ ·)− U‖2T.V.

where Ct and U are as in Lemma 2.1. Combining this with (5), we get

d(t)2 ≤
∑
y

P̂ (ρy)
2t (13)

where the sum runs over all nonzero (n− 1)× (n− 1) matrices y and

P̂ (ρy) =
1(
n
2

)2 ∑
i,j,k,l

cos
2π < y, Ãi,j,k,l >

q
.

For each a ∈ Z/qZ, let Na(y) be the number of quadruples (i, j, k, l) with 1 ≤ i ≤ j ≤ n − 1 and
1 ≤ k ≤ l ≤ n− 1 such that < y, Ãi,j,k,l >= a. Then,

P̂ (ρy) =
1(
n
2

)2 ∑
a∈Z/qZ

Na(y) cos
2πa

q
. (14)

Note that
∑

a6=0Na(y) =
(
n
2

)2 −N0(y).

We need to show that for t = n2

4
(

1−cos 2π
q

) log n+ n2(
1−cos 2π

q

)c log log(16n)
√

log n log q,

d(t)2 ≤ q−2c.

To do so, we decompose the right-hand side of (13) into the sum over all y with P̂ (ρy) < 0 and the
sum of the rest, and denote the corresponding sums by d1 and d2.

By Lemma 2.8, each of the P̂ (ρy) with P̂ (ρy) < 0 satisfies P̂ (ρy) ≥ −28
29 . Thus,

d1 ≤ q(n−1)2
(

28

29

)2t

≤ qn2
q−8n2−2c ≤ q−2c/2. (15)

where we used the assumption that c ≥ 640
log log(16n) and n ≥ 3 to get the estimate

t ≥ n2(
1− cos 2π

q

)c log log(16n)
√

log n log q ≥ 2c log q + 120n2 log q.

For the rest of the proof, we will show that d2 ≤ q−2c/2. Assume that it holds, we have d(t)2 ≤
d1 + d2 ≤ q−2c as desired.

For each (n − 1) × (n − 1) matrix y and each 1 ≤ i ≤ j ≤ n − 1 and 1 ≤ k ≤ l ≤ n − 1, we
consider the minor yi,j,k,l obtained by restricting to the rows from i to j and the columns from k
to l, inclusively. We say that [i, j]× [k, l] is a nonzero box if the sum of the entries in this minor is
nonzero. Denote by N(y) the number of non-zero boxes of y. Observe that

∑
a6=0Na(y) = N(y).

When P̂ (ρy) ≥ 0, we have from (14) that

0 ≤ P̂ (ρy) ≤
1(
n
2

)2
N0(y) +

∑
a6=0

Na(y)

 cos
2π

q

 = 1−

(
1− cos 2π

q

)
N(y)(

n
2

)2 .



Thus,

d2 ≤
∑

y:P̂ (ρy)≥0

1−

(
1− cos 2π

q

)
N(y)(

n
2

)2
2t

≤ Σ

where

Σ :=
∑(

1−
(1− cos 2π

q )N(y)(
n
2

)2
)2t

. (16)

where the sum is taken over all matrices y 6= 0 with N(y) ≤ (n2)
2

1−cos 2π
q

.

It remains to show that
Σ ≤ q−2c/2 (17)

and for that we need to control the number of matrices y with a prescribed range of N(y).

The number N(y) of nonzero boxes of a matrix y can vary significantly just by changing an entry
of y. For example, if y is the zero matrix then N(y) = 0. If we add a single entry 1 at around the
middle of the matrix y, then N(y) ≈ (n/2)4 which is significantly larger. Now, if the single entry
1 is at position (1, 1) (for example) instead of at the middle of the matrix, then N(y) ≈ n2.

It turns out to be useful to look at one dimensional version of the nonzero boxes. Let u be a vector
in (Z/qZ)n−1. For any 1 ≤ i ≤ j ≤ n − 1, the interval [i, j] is said to be a nonzero interval of u if
the sum of the entries of the vector [u(i), u(i + 1), . . . , u(j)] is nonzero in Z/qZ. Let S(u) be the
number of nonzero intervals in u.

In order to control S(u), we introduce the following definition.

Definition 3.2. Let the skeleton of u to be the set I(u) = {i1, i2, . . . , is(u)} ⊂ [1, n− 1] with

• i1 ≥ 1 being the smallest index such that ui1 6= 0,

• ik being the smallest index such that ik ≥ ik−1 + 2 and uik 6= 0, for all 2 ≤ k ≤ s(u),

• ui = 0 for all i ≥ is(u) + 2.

For example, if u has nonzero entries at positions 3, 4, 5, 8, 9 and the rest are 0 then I(u) = {3, 5, 8}
and s(u) = 3.

u = [ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗ 0 0 . . . 0]
↓ ↓ ↓

I(u) = { 3 5 8 }

Observe that for any row vector u, the skeleton size s(u) is at most n/2 and indices of the nonzero
entries of u form a subset of I(u) ∪ (I(u) + 1). Thus, the number of nonzero elements in u is at
most 2s(u).

The number of nonzero intervals S(u) is controlled by the skeleton size s(u) as follows.

Lemma 3.3. Let u be a nonzero 1× (n−1) vector in (Z/qZ)n−1. Then for every n ≥ 3 and q ≥ 2,
we have

S(u) ≥ s(u) (n− s(u)) .

Furthermore, the number of nonzero intervals with one or both endpoints belonging to
I(u) ∪ (I(u)± 1) is at least s(u) (n− s(u)).



Proof. Let the skeleton of u be I(u) = {i1, i2, . . . , is(u)} with i1 < i2 < · · · < is(u). We first claim
that the number of nonzero intervals [i, j] with either j ∈ {i1 − 1, i1} or i ∈ {i1, i1 + 1} or both 2 is
at least n− 1.

i1 − 1 i1 i1 + 1u

Indeed, let 1 ≤ t ≤ n− 1 be any index. If t < i1 then either [t, i1− 1] or [t, i1] is a nonzero interval.
If t = i1 then [t, i1] is a nonzero interval. If t > i1 then [i1, t] or [i1 + 1, t] is a nonzero interval.

Applying the same argument for i2 in place of i1 and t running from 1 to n−1 except for t = i1, i1+1
(to avoid double counting), we obtain at least n − 3 other nonzero intervals [i, j] with either
j ∈ {i2 − 1, i2} or i ∈ {i2, i2 + 1} or both. Keep running this argument for i3, . . . , is(u) gives

(n− 1) + (n− 3) + (n− 5) + · · ·+ (n− 2s(u) + 1) = ns(u)− s(u)2

nonzero intervals as claimed.

Using a similar argument, we can control the number nonzero boxes by the number of nonzero
intervals.

Lemma 3.4. Assume that an (n− 1)× (n− 1) matrix y has some nonzero rows i1, i2, . . . , ik with
|im − il| ≥ 2 for all m 6= l. Let Sm be the number of nonzero intervals of row im. Then for every
n ≥ 3 and q ≥ 2, we have

N(y) ≥ S1(n− 1) + S2(n− 3) + · · ·+ Sk(n− 2k + 1).

Proof. Consider a nonzero interval [p, q] of row im for some 1 ≤ p ≤ q ≤ n− 1 and 1 ≤ m ≤ k. For
each 1 ≤ r ≤ im − 1, either the box [r, im − 1] × [p, q] or the box [r, im] × [p, q] is a nonzero box.
Similarly, for each im + 1 ≤ r ≤ n − 1, either the box [im + 1, r] × [p, q] or the box [im, r] × [p, q]
is a nonzero box. For r = im, the box [im, r] × [p, q] is itself a nonzero box. Thus, each nonzero
interval [p, q] contributes at least n − 1 nonzero boxes that touch 3 the columns p, q and either
touch the row im or the row im − 1 from above or the row im + 1 from below. Taking union over
all nonzero intervals of row im, there are at least Sm(n − 1) nonzero boxes that either touch the
row im or the row im − 1 from above or the row im + 1 from below. Taking union over m and
subtracting the multiple-counted boxes, we conclude that the number of nonzero boxes is at least
S1(n− 1) + S2(n− 3) + · · ·+ Sk(n− 2k + 1).

Now, we give an upper bound on the number of matrices y with o(n3) nonzero boxes.

Lemma 3.5. Let 0 < εn ≤ 1
80 be any number. Let w be a positive integer satisfying 1 ≤ w ≤ εnn.

Then for every n ≥ 3 and q ≥ 2, the number of (n− 1)× (n− 1) matrices y in Z/qZ with

N(y) ≤
(
w +

1

2

)
n2 (18)

is at most q32wn2w+1+60εnw.

2This guarantees that one or both endpoints of [i, j] belong to the set {i1, i1 ± 1}.
3We say that a box touches a row or a column if it has that row or column as a boundary. In other words, the

box [i, j]× [k, l] touches rows i, j and columns k, l.



Moreover, if w ≤ min
{

1
100εn

, εnn
}

, the number of such matrices y is at most q32wn2w. Also, for

such w, the number of matrices y with

N(y) ≤ (w − 40wεn)n2 (19)

is at most q16wn2(w−1).

In the above statement, only the constant 2 in n2w is important. All of the other constants
16, 32, 80, 100 are merely for explicitness. Their exact values do not play any significant role. This
also holds for other (big) constants in the rest of the proof.

Proof. To prove the first part of the lemma, let y be an (n − 1) × (n − 1) matrix satisfying (18).
Let i1 < i2 < · · · < ip be some nonzero rows of y with im ≥ im−1 + 2 for each m. For each row i,
let Si be the number of nonzero interval in that row and 0 ≤ si ≤ n

2 be the size of the its skeleton.
By Lemma 3.3, Si ≥ si(n− si). Note that sij ≥ 1 for all j = 1, . . . , p as they are nonzero rows. By
applying Lemma 3.4 to the row ij , we get(

w +
1

2

)
n2 ≥ Sij (n− 1)

which together with Lemma 3.3 give(
w +

1

2

)
n2 ≥ sij (n− sij )(n− 1).

Thus, for each j = 1, . . . , p,

sij ≤ 2sij

(
1−

sij
n

)
≤ 4w ≤ 4εnn. (20)

By applying Lemma 3.4 to the rows i1, . . . , ip, we get(
w +

1

2

)
n2 ≥ Si1(n− 1) + Si2(n− 3) + · · ·+ Sip(n− 2p+ 1) (21)

and by Lemma 3.3,(
w +

1

2

)
n2 ≥ si1(n− si1)(n− 1) + si2(n− si2)(n− 3) + · · ·+ sip(n− sip)(n− 2p+ 1). (22)

Combining (20) and (22), we obtain

w +
1

2
≥

p∑
j=1

sij

(
1−

sij
n

)(
1− 2j − 1

n

)
≥

p∑
j=1

sij (1− 4εn)

(
1− 2j − 1

n

)
. (23)

Thus,

w +
1

2
≥ (1− 4εn)

p∑
j=1

(
1− 2j − 1

n

)
= (1− 4εn)p

(
1− p

n

)
≥ p/4,

because p ≤ n/2 by the assumption that im ≥ im−1 + 2 for m = 2, . . . , p. So, p ≤ 4w + 2 ≤ 6εnn.
Plugging this into (23), we obtain(

w +
1

2

)
(1 + 20εn) ≥

(
w +

1

2

)
(1− 4εn)−1 (1− 12εn)−1 ≥

p∑
j=1

sij ≥ p. (24)



We conclude that if there are p nonzero rows whose indices are of distance at least 2 from each
other, then p ≤

(
w + 1

2

)
(1 + 20εn). Let

f(w) =

⌊(
w +

1

2

)
(1 + 20εn)

⌋
.

Note that f(w) ≤ 2w ≤ n/2. Thus, there are at most

f(w)∑
p=1

(
n

p

)
2p ≤ f(w)

(
n

f(w)

)
2f(w)

ways to choose the indices of the nonzero rows of y, and it’s always true that there are at most
2f(w) nonzero rows. Similarly, there are at most that many ways to choose the indices of the
nonzero columns of y. Let I be the set of the chosen columns. We have |I| ≤ 2f(w). Applying
(24) to the sequence of chosen rows with odd indices i1, . . . , ip, we see that the number of ways
to choose the corresponding value sij for these rows is at most the number of ways to choose a
sequence of positive integers si1 , . . . , sip satisfying (24) for some value p. And that number is at
most

f(w)∑
a=1

a∑
p=1

∣∣{(si1 , . . . , sip : si1 + · · ·+ sip = a
}∣∣ =

f(w)∑
a=1

a∑
p=1

(
a− 1

p− 1

)
=

f(w)∑
a=1

2a−1 ≤ 2f(w).

Having chosen the si for the rows with odd indices, by the definition of skeletons and the fact that
the nonzero entries lie on the columns in I and (24), the number of ways to choose these rows in
(Z/qZ)n−1 is at most

p∏
j=1

q2si

(
|I|
si

)
≤

p∏
j=1

q2si |I|si ≤ q2f(w)(2f(w))f(w). (25)

Similarly for the rows with even indices.

All in all, the number of choices for y is at most[
f(w)

(
n

f(w)

)
2f(w)

]2 [
2f(w)

]2 [
q2f(w)(2f(w))f(w)

]2
≤ q32wn2f(w) ≤ q32wn2w+1+60εnn.

Now, for the second part of the lemma, if w ≤ 1
100εn

then f(w) ≤ w + 5
6 . In that case, f(w) ≤ w

because both are integers. Thus, the number of matrices y satisfying (18) is at most q32wn2w as
claimed. To bound the number of matrices y that satisfy (19), we use the same argument, with
w + 1/2 being replaced by w − 40wεn throughout. We conclude that the number of matrices y
satisfying (19) is at most q16wn2f(w) where f(w) is the integer part of

(w − 40wεn) (1 + 20εn) ,

which is strictly less than w. Therefore, f(w) ≤ w − 1. This completes the proof.

To handle the matrices with a large number of nonzero boxes, we need a stronger version of Lemma
3.4.



Lemma 3.6. Let y be an (n− 1)× (n− 1) matrix. Let Ψi be a collection of nonzero intervals on
each row i such that for every two consecutive rows i and i+ 1, we have that Ψi ∩Ψi+1 = ∅. Then
for every n ≥ 3 and q ≥ 2, it holds that

2N(y) ≥ (|Ψ1|+ |Ψ2|+ · · ·+ |Ψn−1|)n. (26)

Proof. For each row i, let Pi be the collection of nonzero boxes of the form [i, j]× [k, l] or [i+1, j]×
[k, l] where j ≥ i+ 1 and [k, l] ∈ Ψi together with the nonzero boxes [i, i]× [k, l] (for all [k, l] ∈ Ψi).
Note that for each [k, l] ∈ Ψi, since the interval [k, l] is a nonzero interval in row i, either [i, j]× [k, l]
or [i + 1, j] × [k, l] must be a nonzero box. Thus, |Pi| ≥ |{j : j ≥ i + 1}||Ψi| + |Ψi| = (n − i)|Ψi|.
By the hypothesis, the (Pi)

n−1
i=1 are disjoint. Thus,

N(y) ≥
n−1∑
i=1

|Pi| ≥
n−1∑
i=1

(n− i)|Ψi|. (27)

Likewise, let Qj be the collection of nonzero boxes of the form [j, i]× [k, l] or [j, i− 1]× [k, l] where
j ≤ i− 1 and [k, l] ∈ Ψi together with the nonzero boxes [i, i]× [k, l] (for all [k, l] ∈ Ψi). Then the
Qi are disjoint and |Qi| ≥ i|Ψ1|. Therefore,

N(y) ≥
n−1∑
i=1

|Qi| ≥
n−1∑
i=1

i|Ψi|. (28)

Adding up (27) and (28), we obtain the desired bound.

Now, we bound the number of matrices y with a large number of nonzero boxes.

Lemma 3.7. Let εn be a positive number satisfying 1√
logn

≤ εn ≤ 1
80 . Let w ≥ εnn be an integer.

For every n ≥ 3 and q ≥ 2, the number of (n− 1)× (n− 1) matrices y with

N(y) ≤
(
w +

1

2

)
n2 (29)

is at most n2w+C1εnw where C1 = 200 log q
εn
√

logn
+ 80.

Proof. We will treat the “big” rows and “small” rows separately.
Step 1: Big rows. A row i is said to be a big row if either Si−1 ≥ εnn(n−εnn) or Si ≥ εnn(n−εnn)
or Si+1 ≥ εnn(n− εnn) where Sj is the number of nonzero interval of row j. In other words, either
row i or i± 1 has a large number of nonzero intervals.

Let B be the set of indices i of the big rows in y.

Let M be the number of rows i with

Si ≥ εnn(n− εnn) ≥ εnn2/2. (30)

Assume that there is a sequence of rows i1 < i2 < · · · < ip satisfying (30) with im ≥ im−1 + 2. By
(21), we get(

w +
1

2

)
n2 ≥ 1

2
εnn

2 [(n− 1) + . . . (n− 2p+ 1)] =
1

2
εnn

2p(n− p) ≥ εnn2 pn

4
.



Thus, p ≤ 4(w+ 1
2)

εnn
≤ 6w. And so,

M ≤ 2p ≤ 12w

εnn
. (31)

Since |B| ≤ 3M ≤ 36w
εnn

, the number of ways to choose the set B and the realizations of the rows
with indices belonging to B is at most

2n(qn−1)36w/(εnn) ≤ 2nq36w/εn ≤ n40wεn(log q)/a2 ≤ n40wεn(log q)/a, (32)

where a = εn
√

log n and in the last 2 inequalities, we used the assumption that a ≥ 1.

Step 2: Small rows. It’s left to control the set of small rows [1, n − 1] \ B =: S. We will use
Lemma 3.6 for which we need to define the Ψi carefully.

Step 2.1: Definition of Ψi and ri.

For i ∈ B, we set Ψi = ∅. For i ∈ S, we consider the cases that i is odd and even separately
and define Ψi (and another quantity denoted by ri, which is in essence, the skeleton size of row i)
differently for each case.

Assume that i ∈ S is odd. Let Ii be the skeleton of row i and ri := |Ii|. Note that by Lemma
3.3, the fact that ri ≤ n/2 and the assumption that row i ∈ S, ri ≤ εnn. For an odd index i, let
Ψi be the collection of nonzero intervals of row i with one or both endpoints belonging to the set
Ii := Ii ∪ (Ii ± 1). By Lemma 3.3,

|Ψi| ≥ ri(n− ri) ≥ ri(n− εnn). (33)

Assume that i ∈ S is even. Note that the Ψi±1 are defined in Step 2.1.1. Let Ki = Ici−1 ∩Ici+1.
Observe that any interval [h, h′] with h, h′ ∈ Ki, it holds that [h, h′] does not belong to Ψi−1∪Ψi+1.
Define Ψi to be the collection of nonzero intervals with both endpoints in Ki. This guarantees that
the assumption of Lemma 3.6 is satisfied.

To define ri, let Li = J ci−1 ∩ J ci+1, where Jj := Ij ∪ (Ij ± 1) ∪ (Ij ± 2). We have Li ⊂ Ki and

|Ki| ≥ |Li| ≥ n− 5|Ii−1| − 5|Ii+1| ≥ n− 5ri−1 − 5ri+1 ≥ n− 10εnn. (34)

We consider a version of skeleton Ĩi = {i1, i2, . . . , is} restricted to the set Li as follows. Let
u = (yi,1, . . . , yi,n−1) ∈ (Z/qZ)n−1 be the vector of row i. Let i1 be the smallest index in Li such
that ui1 6= 0. Let ik be the smallest index such that ik ∈ Li, ik ≥ ik−1 + 2 and uik 6= 0 for all
2 ≤ k ≤ s. Here s is the largest index for which this process has to stop, meaning, uh = 0 for all h
satisfying both h ≥ is + 2 and h ∈ Li. Set ri := s. Observe that ri ≤ εnn because i ∈ S and ri is
at most the size of the skeleton of row i.

By the same argument as in the proof of Lemma 3.3, the number of nonzero intervals with both
endpoints belonging to the set {i1, i1 ± 1, . . . , iri , iri ± 1} or one endpoint in this set and the other
in Ki is at least ri(|Ki| − ri). By the definition of Li, this set is a subset of Ki, and so all such
intervals belong to Ψi. Therefore,

|Ψi| ≥ ri(|Ki| − ri).

From that and (34), we get

|Ψi| ≥ ri(n− 10εnn− ri) ≥ ri(n− 11εnn). (35)



Applying Lemma 3.6 together with the equations (33) and (35), we have

(2w + 1)n2 ≥ 2N(y) ≥ (|Ψ1|+ · · ·+ |Ψn−1|)n ≥
∑
i∈S

ri(n− 11εnn)n,

which gives that ∑
i∈S

ri ≤
2w + 1

1− 11εn
≤ 2w + 44wεn + 2. (36)

Step 2.2: Realizations of small rows.

Choosing the ri. The number of sequences (ri)i∈S of nonnegative integers satisfying (36) is
at most the number of nonnegative integer solutions to r1 + r2 + · · · + rn−1 = a for some a ≤
2w + 44wεn + 2 and is thus bounded by

2w+44wεn+2∑
a=0

(
a+ n− 2

n− 2

)
≤ 7w

(
6w + 2n

n

)
≤ 7w

(
6ew + 2en

n

)n
≤ n24εnw, (37)

where we used the assumptions that a = εn
√

log n ≥ 1 and w ≥ εnn.

Realizations of odd rows i. For each choice of the set B, the realizations of rows j with j ∈ B,
and the sequence (ri)i∈S , we need to bound the number of realizations of rows i with i ∈ S.

If i ∈ S is odd, then by the definition of skeletons, the number of realizations of row i with a given
ri, the size of its skeleton, is at most (

n

ri

)
q2ri . (38)

Realizations of even rows i. Having chosen all of the rows i′ with i′ being odd, for each even
index i ∈ S, note that the set Li, defined earlier in the proof, is fixed as the rows i± 1 (odd) have
been chosen. The number of choices for the restricted skeleton Ĩi is at most

(
n
ri

)
. The number of

realizations of row i inside the set Li with a given Ĩi is at most q2ri . The number of realizations of
row i inside the set Lci is at most q|L

c
i | ≤ q5ri−1+5ri+1 by (34). Thus, the number of realizations of

row i given ri, ri±1 and the rows with odd indices is at most(
n

ri

)
q2ri+5ri−1+5ri+1 (39)

Combining. From (38), and (39), the number of realizations of rows i with i ∈ S is at most

∏
i∈S,i=2k+1

(
n

ri

)
q2ri

∏
i∈S,i=2k

(
n

ri

)
q2ri+5ri−1+5ri+1 ≤

exp

(
log n

∑
i∈S

ri + 12 log q
∑
i∈S

ri

)
≤ n2w+45εnw+160wεn(log q)/a (40)

where in the last inequality, we used (36).

Combining (32), (37) and (40), we obtain the stated lemma.

Finally, we are ready to prove (17) which completes the proof of the upper bound of Theorem 1.2.



Lemma 3.8. Let αn = log log(16n)
√

log n. Let c be any number satisfying c ≥ 640
log log(16n) . Let

t = n2

4
(

1−cos 2π
q

) log n+ n2(
1−cos 2π

q

)cαn log q. We have for all n ≥ 3 and q ≥ 2,

Σ =
∑(

1− (1− cos 2π/q)N(y)(
n
2

)2
)2t

≤ q−2c/2. (41)

where the sum is taken over all matrices y 6= 0 with N(y) ≤ (n2)
2

1−cos 2π
q

.

Proof. Let εn = 1
100
√

logn
chosen with foresight. We break up the left-hand side of (41) into sums

T1, T2 where

• T1 is the sum over all y with 1 ≤ N(y) ≤ n2

100εn
,

• T2 is the sum over all y with n2

100εn
≤ N(y) ≤ (n2)

2

1−cos 2π/q .

Observe that for these matrices y,

0 ≤ 1− (1− cos 2π/q)N(y)(
n
2

)2 ≤ exp

(
−4(1− cos 2π/q)N(y)

n4

)
.

Bound T1. Note that by combining Lemmas 3.3 and 3.4, every nonzero matrix y has N(y) ≥
(n− 1)2 ≥ (1− 1/2)n2. Thus T1 ≤ T1,1 + T1,2 where

T1,1 =

1/(100εn)∑
w=1

∣∣∣∣{y :

(
w − 1

2

)
n2 < N(y) ≤ (w − 40wεn)n2

}∣∣∣∣ exp

(
−

8(1− cos 2π/q)t
(
w − 1

2

)
n2

)
,

T1,2 =

1/(100εn)∑
w=1

∣∣∣∣{y : (w − 40wεn)n2 < N(y) ≤
(
w +

1

2

)
n2

}∣∣∣∣ exp

(
−8(1− cos 2π/q)t (w − 40wεn)

n2

)
.

Since εn ≤ 1
80 , applying the second part of Lemma 3.5, we deduce that

T1,1 ≤
1/(100εn)∑
w=1

q16wn2w−2 exp

(
−

8(1− cos 2π/q)t
(
w − 1

2

)
n2

)
≤
∞∑
w=1

q(16−4cα)w ≤ q−2c

8

and

T1,2 ≤
1/(100εn)∑
w=1

q32wn2w exp

(
−8(1− cos 2π/q)t (w − 40wεn)

n2

)
≤
∞∑
w=1

q(32−cα/4)w ≤ q−2c

8

where we use the fact that α ≥ 1 and cα ≥ 640
√

log n. Thus, T1 ≤ q−2c/4.

Bound T2. We have T2 ≤ T2,1 + T2,2 where

T2,1 =

εnn∑
w=1/(100εn)

∣∣∣∣{y :

(
w − 1

2

)
n2 < N(y) ≤

(
w +

1

2

)
n2

}∣∣∣∣ exp

(
−

8(1− cos 2π/q)t
(
w − 1

2

)
n2

)
,



T2,2 =

∞∑
w=εnn

∣∣∣∣{y :

(
w − 1

2

)
n2 < N(y) ≤

(
w +

1

2

)
n2

}∣∣∣∣ exp

(
−

8(1− cos 2π/q)t
(
w − 1

2

)
n2

)
,

Since εn ≤ 1
80 , applying the first part of Lemma 3.5 to T2,1 yields

T2,1 ≤
∞∑

w=1/(100εn)

q32wn2w+1+60εnw exp

(
−

8(1− cos 2π/q)t
(
w − 1

2

)
n2

)
≤ q−2c

8

where we used the fact that cα log q ≥ 320εn log n.

Applying the first part of Lemma 3.7 to T2,2 yields

T2,1 ≤
∞∑

w=εnn

n2w+C1εnw exp

(
−

8(1− cos 2π/q)t
(
w − 1

2

)
n2

)
≤ q−2c

8
.

where C1 is as in Lemma 3.7 and we used the fact that C1εn ≤ 300 log q√
logn

and that cα log q ≥ 640
√

log n.

Thus, T2 ≤ q−2c/4 which together with the bound on T1 complete the proof.
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