On the mixing time of the Diaconis-Gangolli random walk on contingency tables over Z/qZ
Author(s): Nestoridi, Evita; Nguyen, Oanh
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1xd0qx7n
Abstract: | The Diaconis-Gangolli random walk is an algorithm that generates an almost uniform random graph with prescribed degrees. In this paper, we study the mixing time of the Diaconis-Gangolli random walk restricted on n x n contingency tables over Z/qZ. We prove that the random walk exhibits cutoff at n(2)/4(1-cos 2 pi/q) log n, when log q = o(root log n/log log n). |
Publication Date: | May-2020 |
Citation: | Nestoridi, Evita, Nguyen, Oanh. (2020). On the mixing time of the Diaconis-Gangolli random walk on contingency tables over Z/qZ. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56 (983 - 1001. doi:10.1214/19-AIHP991 |
DOI: | doi:10.1214/19-AIHP991 |
ISSN: | 0246-0203 |
Pages: | 983 - 1001 |
Language: | English |
Type of Material: | Journal Article |
Journal/Proceeding Title: | ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.