Skip to main content

Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements

Author(s): Zhang, Weiwei; Spector, Tim D; Deloukas, Panos; Bell, Jordana T; Engelhardt, Barbara E

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1x27p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Weiwei-
dc.contributor.authorSpector, Tim D-
dc.contributor.authorDeloukas, Panos-
dc.contributor.authorBell, Jordana T-
dc.contributor.authorEngelhardt, Barbara E-
dc.date.accessioned2021-10-08T19:49:49Z-
dc.date.available2021-10-08T19:49:49Z-
dc.date.issued2015en_US
dc.identifier.citationZhang, Weiwei, Tim D. Spector, Panos Deloukas, Jordana T. Bell, and Barbara E. Engelhardt. "Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements." Genome Biology 16, no. 1 (2015). doi:10.1186/s13059-015-0581-9en_US
dc.identifier.issn1465-6906-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1x27p-
dc.description.abstractBackground Recent assays for individual-specific genome-wide DNA methylation profiles have enabled epigenome-wide association studies to identify specific CpG sites associated with a phenotype. Computational prediction of CpG site-specific methylation levels is critical to enable genome-wide analyses, but current approaches tackle average methylation within a locus and are often limited to specific genomic regions. Results We characterize genome-wide DNA methylation patterns, and show that correlation among CpG sites decays rapidly, making predictions solely based on neighboring sites challenging. We built a random forest classifier to predict methylation levels at CpG site resolution using features including neighboring CpG site methylation levels and genomic distance, co-localization with coding regions, CpG islands (CGIs), and regulatory elements from the ENCODE project. Our approach achieves 92% prediction accuracy of genome-wide methylation levels at single-CpG-site precision. The accuracy increases to 98% when restricted to CpG sites within CGIs and is robust across platform and cell-type heterogeneity. Our classifier outperforms other types of classifiers and identifies features that contribute to prediction accuracy: neighboring CpG site methylation, CGIs, co-localized DNase I hypersensitive sites, transcription factor binding sites, and histone modifications were found to be most predictive of methylation levels. Conclusions Our observations of DNA methylation patterns led us to develop a classifier to predict DNA methylation levels at CpG site resolution with high accuracy. Furthermore, our method identified genomic features that interact with DNA methylation, suggesting mechanisms involved in DNA methylation modification and regulation, and linking diverse epigenetic processes.en_US
dc.language.isoen_USen_US
dc.relation.ispartofGenome Biologyen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titlePredicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elementsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1186/s13059-015-0581-9-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
MethylElements.pdf3.5 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.