Skip to main content

Online Learning with Low Rank Experts

Author(s): Hazan, Elad; Koren, Tomer; Livni, Roi; Mansour, Yishay

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1w83z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHazan, Elad-
dc.contributor.authorKoren, Tomer-
dc.contributor.authorLivni, Roi-
dc.contributor.authorMansour, Yishay-
dc.date.accessioned2021-10-08T19:49:38Z-
dc.date.available2021-10-08T19:49:38Z-
dc.date.issued2016en_US
dc.identifier.citationHazan, Elad, Tomer Koren, Roi Livni, and Yishay Mansour. "Online Learning with Low Rank Experts." In Conference on Learning Theory (2016): pp. 1096-1114.en_US
dc.identifier.issn2640-3498-
dc.identifier.urihttp://proceedings.mlr.press/v49/hazan16.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1w83z-
dc.description.abstractWe consider the problem of prediction with expert advice when the losses of the experts have low-dimensional structure: they are restricted to an unknown d-dimensional subspace. We devise algorithms with regret bounds that are independent of the number of experts and depend only on the rank d. For the stochastic model we show a tight bound of Θ(\sqrtdT), and extend it to a setting of an approximate d subspace. For the adversarial model we show an upper bound of O(d\sqrtT) and a lower bound of Ω(\sqrtdT).en_US
dc.format.extent1096 - 1114en_US
dc.language.isoen_USen_US
dc.relation.ispartofConference on Learning Theoryen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleOnline Learning with Low Rank Expertsen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
OnlineLearnLowRankExperts.pdf281.54 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.