Skip to main content

Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection

Author(s): VanderSluis, B; Hess, DC; Pesyna, C; Krumholz, EW; Syed, T; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1w09d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVanderSluis, B-
dc.contributor.authorHess, DC-
dc.contributor.authorPesyna, C-
dc.contributor.authorKrumholz, EW-
dc.contributor.authorSyed, T-
dc.contributor.authorSzappanos, B-
dc.contributor.authorNislow, C-
dc.contributor.authorPapp, B-
dc.contributor.authorTroyanskaya, Olga G.-
dc.contributor.authorMyers, CL-
dc.contributor.authorCaudy, AA-
dc.date.accessioned2018-07-20T15:07:10Z-
dc.date.available2018-07-20T15:07:10Z-
dc.date.issued2014-04-10en_US
dc.identifier.citationVanderSluis, B, Hess, DC, Pesyna, C, Krumholz, EW, Syed, T, Szappanos, B, Nislow, C, Papp, B, Troyanskaya, OG, Myers, CL, Caudy, AA. (2014). Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biology, 15 (10.1186/gb-2014-15-4-r64en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1w09d-
dc.description.abstractBackground: Genome-wide sensitivity screens in yeast have been immensely popular following the construction of a collection of deletion mutants of non-essential genes. However, the auxotrophic markers in this collection preclude experiments on minimal growth medium, one of the most informative metabolic environments. Here we present quantitative growth analysis for mutants in all 4,772 non-essential genes from our prototrophic deletion collection across a large set of metabolic conditions. Results: The complete collection was grown in environments consisting of one of four possible carbon sources paired with one of seven nitrogen sources, for a total of 28 different well-defined metabolic environments. The relative contributions to mutants' fitness of each carbon and nitrogen source were determined using multivariate statistical methods. The mutant profiling recovered known and novel genes specific to the processing of nutrients and accurately predicted functional relationships, especially for metabolic functions. A benchmark of genome-scale metabolic network modeling is also given to demonstrate the level of agreement between current in silico predictions and hitherto unavailable experimental data. Conclusions: These data address a fundamental deficiency in our understanding of the model eukaryote Saccharomyces cerevisiae and its response to the most basic of environments. While choice of carbon source has the greatest impact on cell growth, specific effects due to nitrogen source and interactions between the nutrients are frequent. We demonstrate utility in characterizing genes of unknown function and illustrate how these data can be integrated with other whole-genome screens to interpret similarities between seemingly diverse perturbation types.en_US
dc.language.isoen_USen_US
dc.relation.ispartofGenome Biologyen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleBroad metabolic sensitivity profiling of a prototrophic yeast deletion collectionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1186/gb-2014-15-4-r64-
dc.date.eissued2014-04-10en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection.pdf1.28 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.