Skip to main content

SUN RGB-D: A RGB-D scene understanding benchmark suite

Author(s): Song, Shuran; Lichtenberg, Samuel; Xiao, Jianxiong

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vz6f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSong, Shuran-
dc.contributor.authorLichtenberg, Samuel-
dc.contributor.authorXiao, Jianxiong-
dc.date.accessioned2021-10-08T19:50:09Z-
dc.date.available2021-10-08T19:50:09Z-
dc.date.issued2015en_US
dc.identifier.citationSong, Shuran, Samuel P. Lichtenberg, and Jianxiong Xiao. "SUN RGB-D: A RGB-D scene understanding benchmark suite." In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015): pp. 567-576. doi:10.1109/CVPR.2015.7298655en_US
dc.identifier.issn1063-6919-
dc.identifier.urihttps://openaccess.thecvf.com/content_cvpr_2015/papers/Song_SUN_RGB-D_A_2015_CVPR_paper.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vz6f-
dc.description.abstractAlthough RGB-D sensors have enabled major break-throughs for several vision tasks, such as 3D reconstruction, we have not attained the same level of success in high-level scene understanding. Perhaps one of the main reasons is the lack of a large-scale benchmark with 3D annotations and 3D evaluation metrics. In this paper, we introduce an RGB-D benchmark suite for the goal of advancing the state-of-the-arts in all major scene understanding tasks. Our dataset is captured by four different sensors and contains 10,335 RGB-D images, at a similar scale as PASCAL VOC. The whole dataset is densely annotated and includes 146,617 2D polygons and 64,595 3D bounding boxes with accurate object orientations, as well as a 3D room layout and scene category for each image. This dataset enables us to train data-hungry algorithms for scene-understanding tasks, evaluate them using meaningful 3D metrics, avoid overfitting to a small testing set, and study cross-sensor bias.en_US
dc.format.extent567 - 576en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.rightsAuthor's manuscripten_US
dc.titleSUN RGB-D: A RGB-D scene understanding benchmark suiteen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/CVPR.2015.7298655-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
SceneUnderstandingSuite.pdf5 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.