To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1vc1x
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dvir, Zeev | - |
dc.contributor.author | Moran, Shay | - |
dc.date.accessioned | 2021-10-08T19:46:13Z | - |
dc.date.available | 2021-10-08T19:46:13Z | - |
dc.date.issued | 2018-11-16 | en_US |
dc.identifier.citation | Dvir, Zeev, and Shay Moran. "A Sauer-Shelah-Perles Lemma for Sumsets." The Electronic Journal of Combinatorics 25, no. 4 (2018): pp. P4.38:1-P4.38:7. doi:10.37236/7945 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1vc1x | - |
dc.description.abstract | We show that any family of subsets A ⊆ 2 [ n ] satisfies | A | ≤ O ( n ⌈ d / 2 ⌉ ) , where d is the VC dimension of { S △ T | S , T ∈ A } , and △ is the symmetric difference operator. We also observe that replacing △ by either ∪ or ∩ fails to satisfy an analogous statement. Our proof is based on the polynomial method; specifically, on an argument due to [Croot, Lev, Pach '17]. | en_US |
dc.format.extent | P4.38:1 - P4.38:7 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | The Electronic Journal of Combinatorics | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | A Sauer-Shelah-Perles Lemma for Sumsets | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.37236/7945 | - |
dc.identifier.eissn | 1077-8926 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
LemmaForSumsets.pdf | 276.13 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.