Skip to main content

A Sauer-Shelah-Perles Lemma for Sumsets

Author(s): Dvir, Zeev; Moran, Shay

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1vc1x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDvir, Zeev-
dc.contributor.authorMoran, Shay-
dc.date.accessioned2021-10-08T19:46:13Z-
dc.date.available2021-10-08T19:46:13Z-
dc.date.issued2018-11-16en_US
dc.identifier.citationDvir, Zeev, and Shay Moran. "A Sauer-Shelah-Perles Lemma for Sumsets." The Electronic Journal of Combinatorics 25, no. 4 (2018): pp. P4.38:1-P4.38:7. doi:10.37236/7945en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1vc1x-
dc.description.abstractWe show that any family of subsets A ⊆ 2 [ n ] satisfies | A | ≤ O ( n ⌈ d / 2 ⌉ ) , where d is the VC dimension of { S △ T | S , T ∈ A } , and △ is the symmetric difference operator. We also observe that replacing △ by either ∪ or ∩ fails to satisfy an analogous statement. Our proof is based on the polynomial method; specifically, on an argument due to [Croot, Lev, Pach '17].en_US
dc.format.extentP4.38:1 - P4.38:7en_US
dc.language.isoen_USen_US
dc.relation.ispartofThe Electronic Journal of Combinatoricsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleA Sauer-Shelah-Perles Lemma for Sumsetsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.37236/7945-
dc.identifier.eissn1077-8926-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
LemmaForSumsets.pdf276.13 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.