Skip to main content

Multi-sensor authentication to improve smartphone security

Author(s): Lee, W-H; Lee, Ruby B

To refer to this page use:
Abstract: The widespread use of smartphones gives rise to new security and privacy concerns. Smartphone thefts account for the largest percentage of thefts in recent crime statistics. Using a victim's smartphone, the attacker can launch impersonation attacks, which threaten the security of the victim and other users in the network. Our threat model includes the attacker taking over the phone after the user has logged on with his password or pin. Our goal is to design a mechanism for smartphones to better authenticate the current user, continuously and implicitly, and raise alerts when necessary. In this paper, we propose a multi-sensors-based system to achieve continuous and implicit authentication for smartphone users. The system continuously learns the owner's behavior patterns and environment characteristics, and then authenticates the current user without interrupting user-smartphone interactions. Our method can adaptively update a user's model considering the temporal change of user's patterns. Experimental results show that our method is efficient, requiring less than 10 seconds to train the model and 20 seconds to detect the abnormal user, while achieving high accuracy (more than 90%). Also the combination of more sensors provide better accuracy. Furthermore, our method enables adjusting the security level by changing the sampling rate.
Publication Date: 9-Feb-2015
Citation: Lee, W-H, Lee, RB. (2015). Multi-sensor authentication to improve smartphone security. 270 - 280
ISBN-13: 978-989758081-9
Pages: 270 - 280
Type of Material: Conference Article
Journal/Proceeding Title: ICISSP 2015 - 1st International Conference on Information Systems Security and Privacy
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.