Skip to main content

Information Lower Bounds via Self-reducibility

Author(s): Braverman, Mark; Garg, Ankit; Pankratov, Denis; Weinstein, Omri

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1v826
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBraverman, Mark-
dc.contributor.authorGarg, Ankit-
dc.contributor.authorPankratov, Denis-
dc.contributor.authorWeinstein, Omri-
dc.date.accessioned2021-10-08T19:44:44Z-
dc.date.available2021-10-08T19:44:44Z-
dc.date.issued2013en_US
dc.identifier.citationBraverman, Mark, Ankit Garg, Denis Pankratov, and Omri Weinstein. "Information Lower Bounds via Self-reducibility." In International Computer Science Symposium in Russia (2013): pp. 183-194. doi:10.1007/978-3-642-38536-0_16en_US
dc.identifier.urihttps://eccc.weizmann.ac.il/report/2012/177/-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1v826-
dc.description.abstractWe use self-reduction methods to prove strong information lower bounds on two of the most studied functions in the communication complexity literature: Gap Hamming Distance (GHD) and Inner Product (IP). In our first result we affirm the conjecture that the information cost of GHD : is linear even under the uniform distribution, which strengthens the Ω(n) bound recently shown by [15], and answering an open problem from [10]. In our second result we prove that the information cost of IP n is arbitrarily close to the trivial upper bound n as the permitted error tends to zero, again strengthening the Ω(n) lower bound recently proved by [9]. Our proofs demonstrate that self-reducibility makes the connection between information complexity and communication complexity lower bounds a two-way connection. Whereas numerous results in the past [13,2,3] used information complexity techniques to derive new communication complexity lower bounds, we explore a generic way in which communication complexity lower bounds imply information complexity lower bounds in a black-box manner.en_US
dc.format.extent183 - 194en_US
dc.language.isoen_USen_US
dc.relation.ispartofComputer Science – Theory and Applicationsen_US
dc.relation.ispartofseriesLecture Notes in Computer Science;-
dc.rightsAuthor's manuscripten_US
dc.titleInformation Lower Bounds via Self-reducibilityen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1007/978-3-642-38536-0_16-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
InformationLowerBoundsSelfReducibilityLectureNotes.pdf668.05 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.