Skip to main content

Microscopic relaxation channels in materials for superconducting qubits

Author(s): Premkumar, Anjali; Weiland, Conan; Hwang, Sooyeon; Jäck, Berthold; Place, Alexander PM; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1v698c28
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPremkumar, Anjali-
dc.contributor.authorWeiland, Conan-
dc.contributor.authorHwang, Sooyeon-
dc.contributor.authorJäck, Berthold-
dc.contributor.authorPlace, Alexander PM-
dc.contributor.authorWaluyo, Iradwikanari-
dc.contributor.authorHunt, Adrian-
dc.contributor.authorBisogni, Valentina-
dc.contributor.authorPelliciari, Jonathan-
dc.contributor.authorBarbour, Andi-
dc.contributor.authorMiller, Mike S-
dc.contributor.authorRusso, Paola-
dc.contributor.authorCamino, Fernando-
dc.contributor.authorKisslinger, Kim-
dc.contributor.authorTong, Xiao-
dc.contributor.authorHybertsen, Mark S-
dc.contributor.authorHouck, Andrew A-
dc.contributor.authorJarrige, Ignace-
dc.date.accessioned2024-01-07T03:01:20Z-
dc.date.available2024-01-07T03:01:20Z-
dc.identifier.citationPremkumar, Anjali, Weiland, Conan, Hwang, Sooyeon, Jäck, Berthold, Place, Alexander PM, Waluyo, Iradwikanari, Hunt, Adrian, Bisogni, Valentina, Pelliciari, Jonathan, Barbour, Andi, Miller, Mike S, Russo, Paola, Camino, Fernando, Kisslinger, Kim, Tong, Xiao, Hybertsen, Mark S, Houck, Andrew A, Jarrige, Ignace. (Microscopic relaxation channels in materials for superconducting qubits. Communications Materials, 2 (1), 10.1038/s43246-021-00174-7en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1v698c28-
dc.description.abstractDespite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we combine measurements of transmon qubit relaxation times (T1) with spectroscopy and microscopy of the polycrystalline niobium films used in qubit fabrication. By comparing films deposited using three different techniques, we reveal correlations between (T1) and intrinsic film properties such as grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Qubit and resonator measurements show signatures of two-level system defects, which we propose to be hosted in the grain boundaries and surface oxides. We also show that the residual resistance ratio of the polycrystalline niobium films can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofCommunications Materialsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleMicroscopic relaxation channels in materials for superconducting qubitsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1038/s43246-021-00174-7-
dc.date.eissued2021-07-01en_US
dc.identifier.eissn2662-4443-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
s43246-021-00174-7.pdf1.81 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.