Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits
Author(s): Agarwal, Alekh; Hsu, Daniel; Kale, Satyen; Langford, John; Li, Lihong; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1v255
Abstract: | We present a new algorithm for the contextual bandit learning problem, where the learner repeatedly takes one of $K$ actions in response to the observed context, and observes the reward only for that chosen action. Our method assumes access to an oracle for solving fully supervised cost-sensitive classification problems and achieves the statistically optimal regret guarantee with only $\tilde{O}(\sqrt{KT/\log N})$ oracle calls across all $T$ rounds, where $N$ is the number of policies in the policy class we compete against. By doing so, we obtain the most practical contextual bandit learning algorithm amongst approaches that work for general policy classes. We further conduct a proof-of-concept experiment which demonstrates the excellent computational and prediction performance of (an online variant of) our algorithm relative to several baselines. |
Publication Date: | 2014 |
Citation: | Agarwal, Alekh, Hsu, Daniel, Kale, Satyen, Langford, John, Li, Lihong, Schapire, Robert E. (Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits |
Type of Material: | Conference Article |
Journal/Proceeding Title: | 31st International Conference on Machine Learning |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.