Skip to main content

Contract-Based Interference Coordination in Heterogeneous Cloud Radio Access Networks

Author(s): Peng, Mugen; Xie, Xinqian; Hu, Qiang; Zhang, Jie; Poor, H Vincent

To refer to this page use:
Abstract: Heterogeneous cloud radio access networks (H-CRANs) are potential solutions for improving both spectral and energy efficiencies by embedding cloud computing into heterogeneous networks. The interference among remote radio heads (RRHs) can be suppressed with centralized cooperative processing in the base band unit (BBU) pool, while the inter-tier interference between RRHs and macro base stations (MBSs) is still challenging in H-CRANs. In this paper, to mitigate this inter-tier interference, a contract-based interference coordination framework is proposed, in which three scheduling schemes are involved, and the downlink transmission interval is divided into three phases accordingly. The core idea of the proposed framework is that the BBU pool covering all RRHs is selected as the principal that would offer a contract to the MBS, and the MBS as the agent decides whether to accept the contract or not according to an individual rational constraint. An optimal contract design that maximizes the rate-based utility is derived when perfect channel state information (CSI) is acquired at both principal and agent. Furthermore, contract optimization under the situation in which only partial CSI can be obtained from practical channel estimation is addressed as well. Monte Carlo simulations are provided to confirm the analysis, and simulation results show that the proposed framework can significantly increase the transmission data rates over baselines, thus demonstrating the effectiveness of the proposed contract-based solution.
Publication Date: Jun-2015
Citation: Peng, Mugen, Xinqian Xie, Qiang Hu, Jie Zhang, and H. Vincent Poor. "Contract-based interference coordination in heterogeneous cloud radio access networks." IEEE Journal on Selected Areas in Communications 33, no. 6 (2015): 1140-1153. doi:10.1109/JSAC.2015.2416985
DOI: 10.1109/JSAC.2015.2416985
ISSN: 0733-8716
EISSN: 1558-0008
Pages: 1140 - 1153
Type of Material: Journal Article
Journal/Proceeding Title: IEEE Journal on Selected Areas in Communications
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.