Skip to main content

Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon

Author(s): Wang, Z-H; Zhang, W; Tyryshkin, AM; Lyon, Stephen A; Ager, JW; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1s865
Abstract: Dynamical decoupling (DD) is an efficient tool for preserving quantum coherence in solid-state spin systems. However, the imperfections of real pulses can ruin the performance of long DD sequences. We investigate the accumulation and compensation of different pulse errors in DD using the electron spins of phosphorus donors in silicon as a test system. We study periodic DD sequences based on spin rotations about two perpendicular axes, and their concatenated and symmetrized versions. We show that pulse errors may quickly destroy some spin states, but maintain other states with high fidelity over long times. Pulse sequences based on spin rotations about x and y axes outperform those based on x and z axes due to the accumulation of pulse errors. Concatenation provides an efficient way to suppress the impact of pulse errors, and can maintain high fidelity for all spin components: pulse errors do not accumulate (to first order) as the concatenation level increases, despite the exponential increase in the number of pulses. A symmetrized DD sequence cancels the first-order pulse errors. Our theoretical model gives a clear qualitative picture of the error accumulation and produces results in quantitative agreement with the experiments.
Publication Date: 14-Feb-2012
Electronic Publication Date: 14-Feb-2012
Citation: Wang, Z-H, Zhang, W, Tyryshkin, AM, Lyon, SA, Ager, JW, Haller, EE, Dobrovitski, VV. (2012). Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon. Physical Review B - Condensed Matter and Materials Physics, 85 (10.1103/PhysRevB.85.085206
DOI: doi:10.1103/PhysRevB.85.085206
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review B - Condensed Matter and Materials Physics
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.