Skip to main content

On the Capacity of the Peak Power Constrained Vector Gaussian Channel: An Estimation Theoretic Perspective

Author(s): Dytso, Alex; Al, Mert; Poor, H Vincent; Shamai Shitz, Shlomo

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1s17ss7z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDytso, Alex-
dc.contributor.authorAl, Mert-
dc.contributor.authorPoor, H Vincent-
dc.contributor.authorShamai Shitz, Shlomo-
dc.date.accessioned2024-02-04T01:34:13Z-
dc.date.available2024-02-04T01:34:13Z-
dc.date.issued2019-01-01en_US
dc.identifier.citationDytso, Alex, Al, Mert, Poor, H Vincent, Shamai Shitz, Shlomo. (2019). On the Capacity of the Peak Power Constrained Vector Gaussian Channel: An Estimation Theoretic Perspective. IEEE Transactions on Information Theory, 65 (6), 3907 - 3921. doi:10.1109/tit.2018.2890208en_US
dc.identifier.issn0018-9448-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1s17ss7z-
dc.description.abstractThis paper studies the capacity of an n-dimensional vector Gaussian noise channel subject to the constraint that an input must lie in the ball of radius R centered at the origin. It is known that in this setting, the optimizing input distribution is supported on a finite number of concentric spheres. However, the number, the positions, and the probabilities of the spheres are generally unknown. This paper characterizes necessary and sufficient conditions on the constraint R, such that the input distribution supported on a single sphere is optimal. The maximum R̅ n , such that using only a single sphere is optimal, is shown to be a solution of an integral equation. Moreover, it is shown that ̅Rn scales as √n and the exact limit of R̅ n/ √n is found.en_US
dc.format.extent3907 - 3921en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Information Theoryen_US
dc.rightsAuthor's manuscripten_US
dc.titleOn the Capacity of the Peak Power Constrained Vector Gaussian Channel: An Estimation Theoretic Perspectiveen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/tit.2018.2890208-
dc.identifier.eissn1557-9654-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1804.08524.pdf566.17 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.