Skip to main content

Robust multi-objective learning with mentor feedback

Author(s): Agarwal, A; Badanidiyuru, A; Dudík, M; Schapire, RE; Slivkins, A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1rv7p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgarwal, A-
dc.contributor.authorBadanidiyuru, A-
dc.contributor.authorDudík, M-
dc.contributor.authorSchapire, RE-
dc.contributor.authorSlivkins, A-
dc.date.accessioned2021-10-08T19:47:24Z-
dc.date.available2021-10-08T19:47:24Z-
dc.date.issued2014-01-01en_US
dc.identifier.citationAgarwal, A, Badanidiyuru, A, Dudík, M, Schapire, RE, Slivkins, A. (2014). Robust multi-objective learning with mentor feedback. Journal of Machine Learning Research, 35 (726 - 741en_US
dc.identifier.issn1532-4435-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1rv7p-
dc.description.abstract© 2014 A. Agarwal, A. Badanidiyuru, M. Dudík, R.E. Schapire & A. Slivkins. We study decision making when each action is described by a set of objectives, all of which are to be maximized. During the training phase, we have access to the actions of an outside agent ("mentor"). In the test phase, our goal is to maximally improve upon the mentor's (unobserved) actions across all objectives. We present an algorithm with a vanishing regret compared with the optimal possible improvement, and show that our regret bound is the best possible. The bound is independent of the number of actions, and scales only as the logarithm of the number of objectives.en_US
dc.format.extent726 - 741en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Machine Learning Researchen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleRobust multi-objective learning with mentor feedbacken_US
dc.typeConference Articleen_US
dc.identifier.eissn1533-7928-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
RobustMultiObjectiveLearningMentorFeedback.pdf349.87 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.