Nonparametric Bayesian multiarmed bandits for single-cell experiment design
Author(s): Camerlenghi, Federico; Dumitrascu, Bianca; Ferrari, Federico; Engelhardt, Barbara E; Favaro, Stefano
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1rp0w
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Camerlenghi, Federico | - |
dc.contributor.author | Dumitrascu, Bianca | - |
dc.contributor.author | Ferrari, Federico | - |
dc.contributor.author | Engelhardt, Barbara E | - |
dc.contributor.author | Favaro, Stefano | - |
dc.date.accessioned | 2021-10-08T19:50:51Z | - |
dc.date.available | 2021-10-08T19:50:51Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.citation | Camerlenghi, Federico, Bianca Dumitrascu, Federico Ferrari, Barbara E. Engelhardt, and Stefano Favaro. "Nonparametric Bayesian multiarmed bandits for single-cell experiment design." The Annals of Applied Statistics 14, no. 4 (2020): pp. 2003-2019. doi:10.1214/20-AOAS1370 | en_US |
dc.identifier.issn | 1932-6157 | - |
dc.identifier.uri | https://arxiv.org/pdf/1910.05355.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1rp0w | - |
dc.description.abstract | The problem of maximizing cell type discovery under budget constraints is a fundamental challenge for the collection and analysis of single-cell RNA-sequencing (scRNA-seq) data. In this paper we introduce a simple, computationally efficient and scalable Bayesian nonparametric sequential approach to optimize the budget allocation when designing a large-scale experiment for the collection of scRNA-seq data for the purpose of, but not limited to, creating cell atlases. Our approach relies on the following tools: (i) a hierarchical Pitman–Yor prior that recapitulates biological assumptions regarding cellular differentiation, and (ii) a Thompson sampling multiarmed bandit strategy that balances exploitation and exploration to prioritize experiments across a sequence of trials. Posterior inference is performed by using a sequential Monte Carlo approach which allows us to fully exploit the sequential nature of our species sampling problem. We empirically show that our approach outperforms state-of-the-art methods and achieves near-Oracle performance on simulated and scRNA-seq data alike. HPY-TS code is available at https://github.com/fedfer/HPYsinglecell. | en_US |
dc.format.extent | 2003 - 2019 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Annals of Applied Statistics | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Nonparametric Bayesian multiarmed bandits for single-cell experiment design | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1214/20-AOAS1370 | - |
dc.identifier.eissn | 1941-7330 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NonparametricBayesian.pdf | 2.07 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.