Skip to main content

Nonparametric Bayesian multiarmed bandits for single-cell experiment design

Author(s): Camerlenghi, Federico; Dumitrascu, Bianca; Ferrari, Federico; Engelhardt, Barbara E; Favaro, Stefano

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1rp0w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCamerlenghi, Federico-
dc.contributor.authorDumitrascu, Bianca-
dc.contributor.authorFerrari, Federico-
dc.contributor.authorEngelhardt, Barbara E-
dc.contributor.authorFavaro, Stefano-
dc.date.accessioned2021-10-08T19:50:51Z-
dc.date.available2021-10-08T19:50:51Z-
dc.date.issued2020en_US
dc.identifier.citationCamerlenghi, Federico, Bianca Dumitrascu, Federico Ferrari, Barbara E. Engelhardt, and Stefano Favaro. "Nonparametric Bayesian multiarmed bandits for single-cell experiment design." The Annals of Applied Statistics 14, no. 4 (2020): pp. 2003-2019. doi:10.1214/20-AOAS1370en_US
dc.identifier.issn1932-6157-
dc.identifier.urihttps://arxiv.org/pdf/1910.05355.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1rp0w-
dc.description.abstractThe problem of maximizing cell type discovery under budget constraints is a fundamental challenge for the collection and analysis of single-cell RNA-sequencing (scRNA-seq) data. In this paper we introduce a simple, computationally efficient and scalable Bayesian nonparametric sequential approach to optimize the budget allocation when designing a large-scale experiment for the collection of scRNA-seq data for the purpose of, but not limited to, creating cell atlases. Our approach relies on the following tools: (i) a hierarchical Pitman–Yor prior that recapitulates biological assumptions regarding cellular differentiation, and (ii) a Thompson sampling multiarmed bandit strategy that balances exploitation and exploration to prioritize experiments across a sequence of trials. Posterior inference is performed by using a sequential Monte Carlo approach which allows us to fully exploit the sequential nature of our species sampling problem. We empirically show that our approach outperforms state-of-the-art methods and achieves near-Oracle performance on simulated and scRNA-seq data alike. HPY-TS code is available at https://github.com/fedfer/HPYsinglecell.en_US
dc.format.extent2003 - 2019en_US
dc.language.isoen_USen_US
dc.relation.ispartofAnnals of Applied Statisticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleNonparametric Bayesian multiarmed bandits for single-cell experiment designen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1214/20-AOAS1370-
dc.identifier.eissn1941-7330-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
NonparametricBayesian.pdf2.07 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.