Skip to main content

Network-based coverage of mutational profiles reveals cancer genes

Author(s): Hristov, BH; Singh, Mona

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1rh4n
Abstract: A central goal in cancer genomics is to identify the somatic alterations that underpin tumor initiation and progression. While commonly mutated cancer genes are readily identifiable, those that are rarely mutated across samples are difficult to distinguish from the large numbers of other infrequently mutated genes. We introduce a method, nCOP, that considers per-individual mutational profiles within the context of protein-protein interaction networks in order to identify small connected subnetworks of genes that, while not individually frequently mutated, comprise pathways that are altered across (i.e., “cover”) a large fraction of individuals. By analyzing 6,038 samples across 24 different cancer types, we demonstrate that nCOP is highly effective in identifying cancer genes, including those with low mutation frequencies. Overall, our work demonstrates that combining per-individual mutational information with interaction networks is a powerful approach for tackling the mutational heterogeneity observed across cancers. Cancer-relevant genes, including those rarely mutated across samples, can be effectively identified by considering per-individual mutational profiles in the context of interaction networks and uncovering small connected subnetworks of genes, presumably participating in shared processes, that together are altered across (i.e., “cover”) a large fraction of individuals.
Publication Date: 27-Sep-2017
Electronic Publication Date: 27-Sep-2017
Citation: Hristov, BH, Singh, M. (2017). Network-based coverage of mutational profiles reveals cancer genes. 10229 LNCS (375 - 376
Pages: 375 - 376
Type of Material: Journal Article
Journal/Proceeding Title: Cell Systems
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.