Skip to main content

Proximity Preserving Binary Code Using Signed Graph-Cut

Author(s): Lavi, Inbal; Avidan, Shai; Singer, Yoram; Hel-Or, Yacov

To refer to this page use:
Abstract: We introduce a binary embedding framework, called Proximity Preserving Code (PPC), which learns similarity and dissimilarity between data points to create a compact and affinity-preserving binary code. This code can be used to apply fast and memory-efficient approximation to nearest-neighbor searches. Our framework is flexible, enabling different proximity definitions between data points. In contrast to previous methods that extract binary codes based on unsigned graph partitioning, our system models the attractive and repulsive forces in the data by incorporating positive and negative graph weights. The proposed framework is shown to boil down to finding the minimal cut of a signed graph, a problem known to be NP-hard. We offer an efficient approximation and achieve superior results by constructing the code bit after bit. We show that the proposed approximation is superior to the commonly used spectral methods with respect to both accuracy and complexity. Thus, it is useful for many other problems that can be translated into signed graph cut.
Publication Date: 2020
Citation: Lavi, Inbal, Shai Avidan, Yoram Singer, and Yacov Hel-Or. 2020. “Proximity Preserving Binary Code Using Signed Graph-Cut”. Proceedings of the AAAI Conference on Artificial Intelligence 34 no. 4 (2020): pp. 4535-4544. doi:10.1609/aaai.v34i04.5882
DOI: 10.1609/aaai.v34i04.5882
Pages: 4535 - 4544
Type of Material: Conference Article
Journal/Proceeding Title: Proceedings of the AAAI Conference on Artificial Intelligence
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.