Universal gates for protected superconducting qubits using optimal control
Author(s): Abdelhafez, M; Baker, B; Gyenis, A; Mundada, P; Houck, Andrew A; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1r27z
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abdelhafez, M | - |
dc.contributor.author | Baker, B | - |
dc.contributor.author | Gyenis, A | - |
dc.contributor.author | Mundada, P | - |
dc.contributor.author | Houck, Andrew A | - |
dc.contributor.author | Schuster, D | - |
dc.contributor.author | Koch, J | - |
dc.date.accessioned | 2021-10-08T20:16:32Z | - |
dc.date.available | 2021-10-08T20:16:32Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.citation | Abdelhafez, M, Baker, B, Gyenis, A, Mundada, P, Houck, AA, Schuster, D, Koch, J. (2020). Universal gates for protected superconducting qubits using optimal control. Physical Review A, 101 (10.1103/PhysRevA.101.022321 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1r27z | - |
dc.description.abstract | We employ quantum optimal control theory to realize quantum gates for two protected superconducting circuits: the heavy-fluxonium qubit and the 0-π qubit. Utilizing automatic differentiation facilitates the simultaneous inclusion of multiple optimization targets, allowing one to obtain high-fidelity gates with realistic pulse shapes. For both qubits, disjoint support of low-lying wave functions prevents direct population transfer between the computational-basis states. Instead, optimal control favors dynamics involving higher-lying levels, effectively lifting the protection for a fraction of the gate duration. For the 0-π qubit, offset-charge dependence of matrix elements among higher levels poses an additional challenge for gate protocols. To mitigate this issue, we randomize the offset charge during the optimization process, steering the system towards pulse shapes insensitive to charge variations. Closed-system fidelities obtained are 99% or higher and show slight reductions in open-system simulations. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Physical Review A | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Universal gates for protected superconducting qubits using optimal control | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1103/PhysRevA.101.022321 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Universal gates for protected superconducting qubits using optimal control.pdf | 3.73 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.