Skip to main content

Universal gates for protected superconducting qubits using optimal control

Author(s): Abdelhafez, M; Baker, B; Gyenis, A; Mundada, P; Houck, Andrew A; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1r27z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbdelhafez, M-
dc.contributor.authorBaker, B-
dc.contributor.authorGyenis, A-
dc.contributor.authorMundada, P-
dc.contributor.authorHouck, Andrew A-
dc.contributor.authorSchuster, D-
dc.contributor.authorKoch, J-
dc.date.accessioned2021-10-08T20:16:32Z-
dc.date.available2021-10-08T20:16:32Z-
dc.date.issued2020en_US
dc.identifier.citationAbdelhafez, M, Baker, B, Gyenis, A, Mundada, P, Houck, AA, Schuster, D, Koch, J. (2020). Universal gates for protected superconducting qubits using optimal control. Physical Review A, 101 (10.1103/PhysRevA.101.022321en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1r27z-
dc.description.abstractWe employ quantum optimal control theory to realize quantum gates for two protected superconducting circuits: the heavy-fluxonium qubit and the 0-π qubit. Utilizing automatic differentiation facilitates the simultaneous inclusion of multiple optimization targets, allowing one to obtain high-fidelity gates with realistic pulse shapes. For both qubits, disjoint support of low-lying wave functions prevents direct population transfer between the computational-basis states. Instead, optimal control favors dynamics involving higher-lying levels, effectively lifting the protection for a fraction of the gate duration. For the 0-π qubit, offset-charge dependence of matrix elements among higher levels poses an additional challenge for gate protocols. To mitigate this issue, we randomize the offset charge during the optimization process, steering the system towards pulse shapes insensitive to charge variations. Closed-system fidelities obtained are 99% or higher and show slight reductions in open-system simulations.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPhysical Review Aen_US
dc.rightsAuthor's manuscripten_US
dc.titleUniversal gates for protected superconducting qubits using optimal controlen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevA.101.022321-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Universal gates for protected superconducting qubits using optimal control.pdf3.73 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.