Skip to main content

Thermal and Quantum Melting Phase Diagrams for a Magnetic-Field-Induced Wigner Solid

Author(s): Ma, MK; Villegas Rosales, KA; Deng, H; Chung, YJ; Pfeiffer, LN; et al

To refer to this page use:
Abstract: A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting two-dimensional (2D) system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array in order to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (ν≃1/5). In dilute GaAs 2D hole systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (ν≃1/3). Here we report our measurements of the fundamental temperature vs filling phase diagram for the 2D holes' WS-liquid thermal melting. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs filling WS-liquid quantum melting phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.
Publication Date: 2020
Citation: Ma, MK, Villegas Rosales, KA, Deng, H, Chung, YJ, Pfeiffer, LN, West, KW, Baldwin, KW, Winkler, R, Shayegan, M. (2020). Thermal and Quantum Melting Phase Diagrams for a Magnetic-Field-Induced Wigner Solid. Physical Review Letters, 125 (10.1103/PhysRevLett.125.036601
DOI: doi:10.1103/PhysRevLett.125.036601
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review Letters
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.