Skip to main content

Cloud-Cluster Architecture for Detection in Intermittently Connected Sensor Networks

Author(s): Yemini, Michal; Gil, Stephanie; Goldsmith, Andrea J

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1qn5zb56
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYemini, Michal-
dc.contributor.authorGil, Stephanie-
dc.contributor.authorGoldsmith, Andrea J-
dc.date.accessioned2024-01-19T23:45:38Z-
dc.date.available2024-01-19T23:45:38Z-
dc.date.issued2022-08-23en_US
dc.identifier.citationYemini, Michal, Gil, Stephanie, Goldsmith, Andrea J. (2023). Cloud-Cluster Architecture for Detection in Intermittently Connected Sensor Networks. IEEE Transactions on Wireless Communications, 22 (2), 903 - 919. doi:10.1109/twc.2022.3199415en_US
dc.identifier.issn1536-1276-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1qn5zb56-
dc.description.abstractWe consider a centralized detection problem where sensors experience noisy measurements and intermittent connectivity to a centralized fusion center. The sensors collaborate locally within predefined sensor clusters and fuse their noisy sensor data to reach a common local estimate of the detected event in each cluster. The connectivity of each sensor cluster is intermittent and depends on the available communication opportunities of the sensors to the fusion center. Upon receiving the estimates from all the connected sensor clusters the fusion center fuses the received estimates to make a final determination regarding the occurrence of the event across the deployment area. We refer to this hybrid communication scheme as a cloud-cluster architecture. We propose a method for optimizing the decision rule for each cluster and analyzing the expected detection performance resulting from our hybrid scheme. Our method is tractable and addresses the high computational complexity caused by heterogeneous sensors’ and clusters’ detection quality, heterogeneity in their communication opportunities, and non-convexity of the loss function. Our analysis shows that clustering the sensors provides resilience to noise in the case of low sensor communication probability with the cloud. For larger clusters, a steep improvement in detection performance is possible even for a low communication probability by using our cloud-cluster architecture.en_US
dc.format.extent903 - 919en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Wireless Communicationsen_US
dc.rightsAuthor's manuscripten_US
dc.titleCloud-Cluster Architecture for Detection in Intermittently Connected Sensor Networksen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/twc.2022.3199415-
dc.identifier.eissn1558-2248-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
10323174.pdf1.64 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.