Skip to main content

Towards Minimax Online Learning with Unknown Time Horizon

Author(s): Luo, Haipeng; Schapire, Robert E

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1q837
Abstract: We consider online learning when the time horizon is unknown. We apply a minimax analysis, beginning with the fixed horizon case, and then moving on to two unknown-horizon settings, one that assumes the horizon is chosen randomly according to some known distribution, and the other which allows the adversary full control over the horizon. For the random horizon setting with restricted losses, we derive a fully optimal minimax algorithm. And for the adversarial horizon setting, we prove a nontrivial lower bound which shows that the adversary obtains strictly more power than when the horizon is fixed and known. Based on the minimax solution of the random horizon setting, we then propose a new adaptive algorithm which "pretends" that the horizon is drawn from a distribution from a special family, but no matter how the actual horizon is chosen, the worst-case regret is of the optimal rate. Furthermore, our algorithm can be combined and applied in many ways, for instance, to online convex optimization, follow the perturbed leader, exponential weights algorithm and first order bounds. Experiments show that our algorithm outperforms many other existing algorithms in an online linear optimization setting.
Publication Date: 2014
Citation: Luo, Haipeng, Schapire, Robert E. (Towards Minimax Online Learning with Unknown Time Horizon
Type of Material: Conference Article
Journal/Proceeding Title: 31st International Conference on Machine Learning
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.