Skip to main content

Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition

Author(s): Deng, Jia; Krause, Jonathan; Berg, Alexander C; Li, Fei-Fei

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1pz4w
Abstract: As visual recognition scales up to ever larger numbers of categories, maintaining high accuracy is increasingly difficult. In this work, we study the problem of optimizing accuracy-specificity trade-offs in large scale recognition, motivated by the observation that object categories form a semantic hierarchy consisting of many levels of abstraction. A classifier can select the appropriate level, trading off specificity for accuracy in case of uncertainty. By optimizing this trade-off, we obtain classifiers that try to be as specific as possible while guaranteeing an arbitrarily high accuracy. We formulate the problem as maximizing information gain while ensuring a fixed, arbitrarily small error rate with a semantic hierarchy. We propose the Dual Accuracy Reward Trade-off Search (DARTS) algorithm and prove that, under practical conditions, it converges to an optimal solution. Experiments demonstrate the effectiveness of our algorithm on datasets ranging from 65 to over 10,000 categories.
Publication Date: 2012
Citation: Deng, Jia, Jonathan Krause, Alexander C. Berg, and Li Fei-Fei. "Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition." IEEE Conference on Computer Vision and Pattern Recognition (2012): pp. 3450-3457. doi:10.1109/CVPR.2012.6248086
DOI: 10.1109/CVPR.2012.6248086
ISSN: 1063-6919
EISSN: 1063-6919
Pages: 3450 - 3457
Type of Material: Conference Article
Journal/Proceeding Title: IEEE Conference on Computer Vision and Pattern Recognition
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.