Skip to main content

Optimal stomatal behavior with competition for water and risk of hydraulic impairment

Author(s): Wolf, Adam; Anderegg, William R. L.; Pacala, Stephen W.

To refer to this page use:
Abstract: For over 40 y the dominant theory of stomatal behavior has been that plants should open stomates until the carbon gained by an infinitesimal additional opening balances the additional water lost times a water price that is constant at least over short periods. This theory has persisted because of its remarkable success in explaining strongly supported simple empirical models of stomatal conductance, even though we have also known for over 40 y that the theory is not consistent with competition among plants for water. We develop an alternative theory in which plants maximize carbon gain without pricing water loss and also add two features to both this and the classical theory, which are strongly supported by empirical evidence: (i) water flow through xylem that is progressively impaired as xylem water potential drops and (ii) fitness or carbon costs associated with low water potentials caused by a variety of mechanisms, including xylem damage repair. We show that our alternative carbon-maximization optimization is consistent with plant competition because it yields an evolutionary stable strategy (ESS)—species with the ESS stomatal behavior that will outcompete all others. We further show that, like the classical theory, the alternative theory also explains the functional forms of empirical stomatal models. We derive ways to test between the alternative optimization criteria by introducing a metric—the marginal xylem tension efficiency, which quantifies the amount of photosynthesis a plant will forego from opening stomatal an infinitesimal amount more to avoid a drop in water potential.
Publication Date: 15-Nov-2016
Electronic Publication Date: 31-Oct-2016
Citation: Wolf, Adam, Anderegg, William R. L., Pacala, Stephen W. (2016). Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences, 113 (46), E7222 - E7230. doi:10.1073/pnas.1615144113
DOI: doi:10.1073/pnas.1615144113
ISSN: 0027-8424
EISSN: 1091-6490
Related Item:
Pages: E7222 - E7230
Type of Material: Journal Article
Journal/Proceeding Title: Proceedings of the National Academy of Sciences
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.