A Combinatorial, Primal-Dual Approach to Semidefinite Programs
Author(s): Arora, Sanjeev; Kale, Satyen
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1p82g
Abstract: | Semidefinite programs (SDPs) have been used in many recent approximation algorithms. We develop a general primal-dual approach to solve SDPs using a generalization of the well-known multiplicative weights update rule to symmetric matrices. For a number of problems, such as Sparsest Cut and Balanced Separator in undirected and directed weighted graphs, Min UnCut and Min 2CNF Deletion, this yields combinatorial approximation algorithms that are significantly more efficient than interior point methods. The design of our primal-dual algorithms is guided by a robust analysis of rounding algorithms used to obtain integer solutions from fractional ones. Our ideas have proved useful in quantum computing, especially the recent result of Jain et al. [2011] that QIP = PSPACE. |
Publication Date: | 2016 |
Citation: | Arora, Sanjeev, and Satyen Kale. "A combinatorial, primal-dual approach to semidefinite programs." Journal of the ACM 63, no. 2 (2016). doi:10.1145/2837020 |
DOI: | 10.1145/2837020 |
ISSN: | 0004-5411 |
EISSN: | 1557-735X |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Journal of the ACM |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.