Skip to main content

Efficient Regret Minimization in Non-Convex Games

Author(s): Hazan, Elad; Singh, Karan; Zhang, Cyril

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1nz6c
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHazan, Elad-
dc.contributor.authorSingh, Karan-
dc.contributor.authorZhang, Cyril-
dc.date.accessioned2021-10-08T19:49:04Z-
dc.date.available2021-10-08T19:49:04Z-
dc.date.issued2017en_US
dc.identifier.citationHazan, Elad, Karan Singh, and Cyril Zhang. "Efficient regret minimization in non-convex games." In Proceedings of the 34th International Conference on Machine Learning (2017): pp. 1433-1441.en_US
dc.identifier.issn2640-3498-
dc.identifier.urihttp://proceedings.mlr.press/v70/hazan17a.html-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1nz6c-
dc.description.abstractWe consider regret minimization in repeated games with non-convex loss functions. Minimizing the standard notion of regret is computationally intractable. Thus, we define a natural notion of regret which permits efficient optimization and generalizes offline guarantees for convergence to an approximate local optimum. We give gradient-based methods that achieve optimal regret, which in turn guarantee convergence to equilibrium in this framework.en_US
dc.format.extent1433 - 1441en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the 34th International Conference on Machine Learningen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleEfficient Regret Minimization in Non-Convex Gamesen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
EfficientRegretMinimizationNonConvexGames.pdf464.12 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.