Efficient Regret Minimization in Non-Convex Games
Author(s): Hazan, Elad; Singh, Karan; Zhang, Cyril
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1nz6c
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hazan, Elad | - |
dc.contributor.author | Singh, Karan | - |
dc.contributor.author | Zhang, Cyril | - |
dc.date.accessioned | 2021-10-08T19:49:04Z | - |
dc.date.available | 2021-10-08T19:49:04Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.citation | Hazan, Elad, Karan Singh, and Cyril Zhang. "Efficient regret minimization in non-convex games." In Proceedings of the 34th International Conference on Machine Learning (2017): pp. 1433-1441. | en_US |
dc.identifier.issn | 2640-3498 | - |
dc.identifier.uri | http://proceedings.mlr.press/v70/hazan17a.html | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1nz6c | - |
dc.description.abstract | We consider regret minimization in repeated games with non-convex loss functions. Minimizing the standard notion of regret is computationally intractable. Thus, we define a natural notion of regret which permits efficient optimization and generalizes offline guarantees for convergence to an approximate local optimum. We give gradient-based methods that achieve optimal regret, which in turn guarantee convergence to equilibrium in this framework. | en_US |
dc.format.extent | 1433 - 1441 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Proceedings of the 34th International Conference on Machine Learning | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Efficient Regret Minimization in Non-Convex Games | en_US |
dc.type | Conference Article | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
EfficientRegretMinimizationNonConvexGames.pdf | 464.12 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.