Skip to main content

Spectral method and regularized mle are both optimal for top-K ranking

Author(s): Chen, Yuxin; Fan, Jianqing; Ma, C; Wang, K

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1n85c
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yuxin-
dc.contributor.authorFan, Jianqing-
dc.contributor.authorMa, C-
dc.contributor.authorWang, K-
dc.date.accessioned2021-10-08T20:16:29Z-
dc.date.available2021-10-08T20:16:29Z-
dc.date.issued2019en_US
dc.identifier.citationChen, Y, Fan, J, Ma, C, Wang, K. (2019). Spectral method and regularized mle are both optimal for top-K ranking. Annals of Statistics, 47 (2204 - 2235. doi:10.1214/18-AOS1745en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1n85c-
dc.description.abstractThis paper is concerned with the problem of top-K ranking from pairwise comparisons. Given a collection of n items and a few pairwise comparisons across them, one wishes to identify the set of K items that receive the highest ranks. To tackle this problem, we adopt the logistic parametric model-the Bradley-Terry-Luce model, where each item is assigned a latent preference score, and where the outcome of each pairwise comparison depends solely on the relative scores of the two items involved. Recent works have made significant progress toward characterizing the performance (e.g., the mean square error for estimating the scores) of several classical methods, including the spectral method and the maximum likelihood estimator (MLE). However, where they stand regarding top-K ranking remains unsettled. We demonstrate that under a natural random sampling model, the spectral method alone, or the regularized MLE alone, is minimax optimal in terms of the sample complexity-the number of paired comparisons needed to ensure exact top-K identification, for the fixed dynamic range regime. This is accomplished via optimal control of the entrywise error of the score estimates. We complement our theoretical studies by numerical experiments, confirming that both methods yield low entrywise errors for estimating the underlying scores. Our theory is established via a novel leave-one-out trick, which proves effective for analyzing both iterative and noniterative procedures. Along the way, we derive an elementary eigenvector perturbation bound for probability transition matrices, which parallels the Davis-Kahan sin theorem for symmetric matrices. This also allows us to close the gap between the ℓ2 error upper bound for the spectral method and the minimax lower limit.en_US
dc.format.extent2204 - 2235en_US
dc.language.isoen_USen_US
dc.relation.ispartofAnnals of Statisticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleSpectral method and regularized mle are both optimal for top-K rankingen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/18-AOS1745-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
SPECTRAL METHOD AND REGULARIZED MLE ARE BOTH OPTIMAL FOR TOP-K RANKING.pdf930.04 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.