Volumetric Spanners: An Efficient Exploration Basis for Learning
Author(s): Hazan, Elad; Karnin, Zohar
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1n84z
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hazan, Elad | - |
dc.contributor.author | Karnin, Zohar | - |
dc.date.accessioned | 2021-10-08T19:50:21Z | - |
dc.date.available | 2021-10-08T19:50:21Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.citation | Hazan, Elad, and Zohar Karnin. "Volumetric Spanners: An Efficient Exploration Basis for Learning." Journal of Machine Learning Research 17, no. 119 (2016): pp. 1-34. | en_US |
dc.identifier.uri | https://www.jmlr.org/papers/volume17/hazan16a/hazan16a.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1n84z | - |
dc.description.abstract | Numerous learning problems that contain exploration, such as experiment design, multiarm bandits, online routing, search result aggregation and many more, have been studied extensively in isolation. In this paper we consider a generic and efficiently computable method for action space exploration based on convex geometry. We define a novel geometric notion of an exploration mechanism with low variance called volumetric spanners, and give efficient algorithms to construct such spanners. We describe applications of this mechanism to the problem of optimal experiment design and the general framework for decision making under uncertainty of bandit linear optimization. For the latter we give efficient and near-optimal regret algorithm over general convex sets. Previously such results were known only for specific convex sets, or under special conditions such as the existence of an efficient self-concordant barrier for the underlying set. | en_US |
dc.format.extent | 1 - 34 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Journal of Machine Learning Research | en_US |
dc.rights | Final published version. Article is made available in OAR by the publisher's permission or policy. | en_US |
dc.title | Volumetric Spanners: An Efficient Exploration Basis for Learning | en_US |
dc.type | Journal Article | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
VolumetricSpanners.pdf | 427.32 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.